期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于免疫优化RBF网络的机载嵌入式训练系统效能评估 被引量:4
1
作者 邓晓政 叶冰 余航 《现代电子技术》 北大核心 2019年第8期100-103,108,共5页
针对某新型教练机机载嵌入式训练系统效能评估问题,提出基于免疫优化RBF网络的效能评估算法。将效能评估问题建模为一个非线性回归问题,建立简洁、完备的效能评估指标体系;使用免疫克隆优化算法和一个新颖的编码方式进行自动聚类,得到... 针对某新型教练机机载嵌入式训练系统效能评估问题,提出基于免疫优化RBF网络的效能评估算法。将效能评估问题建模为一个非线性回归问题,建立简洁、完备的效能评估指标体系;使用免疫克隆优化算法和一个新颖的编码方式进行自动聚类,得到合适的RBF网络隐含层单元个数以及高斯函数中心,从而完成RBF网络的训练。在测试部分,通过仿真实验,并对比经典的BP算法、遗传BP算法,该文方法在评估精准度和稳定性方面都是较优的。 展开更多
关键词 效能评估 机载嵌入式训练系统 非线性回归 免疫克隆优化算法 RBF网络 自动聚类
在线阅读 下载PDF
Self-adaptive learning based immune algorithm 被引量:1
2
作者 许斌 庄毅 +1 位作者 薛羽 王洲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1021-1031,共11页
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm ad... A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10^7 in average. 展开更多
关键词 immune algorithm multi-modal optimization evolutionary computation immtme secondary response self-adaptivelearning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部