期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于光谱-空间卷积神经网络的成矿远景区预测研究——以巴基斯坦Chagai地区为例
1
作者 李磊佳 王猛 +3 位作者 胡杰 张博瑞 剧弘旷 刘磊 《地质与勘探》 2025年第5期1043-1052,共10页
卷积神经网络(CNN)是成矿远景区预测研究中广泛使用的方法,如何提升CNN模型的泛化能力和鲁棒性仍是当前研究的热点。巴基斯坦西南部的Chagai成矿带西部发育世界级斑岩铜矿床Reko Diq和大型斑岩铜矿Saindak,是开展斑岩型铜矿床成矿远景... 卷积神经网络(CNN)是成矿远景区预测研究中广泛使用的方法,如何提升CNN模型的泛化能力和鲁棒性仍是当前研究的热点。巴基斯坦西南部的Chagai成矿带西部发育世界级斑岩铜矿床Reko Diq和大型斑岩铜矿Saindak,是开展斑岩型铜矿床成矿远景区研究的有利区。本研究以高光谱遥感数据和5个已知矿床为基础,联合多源地质数据构建训练样本,结合假彩色图像合成技术,扩充训练样本。提出空间-光谱卷积神经网络(SSCNN)算法,构建成矿预测模型,对Chagai带西部斑岩型铜矿的成矿远景区进行预测。结果表明,基于Chagai成矿带5个已知矿床和数据扩充方法构建的2477个正样本和11304个负样本,使用4个SSCNN模型的验证集F1-score均超过0.94,最高可达0.98。已知的研究区内37个矿床/矿点均位于预测的成矿远景区内。前人划定的22个找矿靶区内均包含不同概率级别的成矿远景区,空间匹配率达100%。本研究提出的技术方法有助于抑制模型过拟合并提升泛化能力,为成矿远景区预测研究提供了新思路,可拓展应用于其他类型矿床的成矿远景预测工作。 展开更多
关键词 光谱-空间卷积神经网络 成矿远景 斑岩型铜矿 Chagai带 巴基斯坦
在线阅读 下载PDF
融合多尺度特征卷积神经网络的多光谱图像压缩方法 被引量:4
2
作者 张丽丽 陈子坤 +1 位作者 潘天鹏 屈乐乐 《光学精密工程》 EI CAS CSCD 北大核心 2024年第4期622-634,共13页
不同于普通图像压缩,多光谱图像压缩除了需要去除空间冗余同时还需要去除光谱间冗余,近年来研究表明端到端的卷积神经网络模型在图像压缩方面具有很好的性能,但对于多光谱图像压缩其编解码器并不能有效解决同时高效提取到多光谱图像空... 不同于普通图像压缩,多光谱图像压缩除了需要去除空间冗余同时还需要去除光谱间冗余,近年来研究表明端到端的卷积神经网络模型在图像压缩方面具有很好的性能,但对于多光谱图像压缩其编解码器并不能有效解决同时高效提取到多光谱图像空间和光谱间特征的问题,同时也会忽略图像局部特征信息。针对以上问题,本文提出了一种融合多尺度特征卷积神经网络的多光谱图像压缩方法。所提出网络在压缩模型的编解码器中嵌入了可以提取出不同尺度下空间和光谱间特征信息的多尺度特征提取模块,以及可以用来捕捉局部空间信息和光谱信息的空间光谱间非对称卷积模块。实验表明,与传统算法如JPEG2000和3D-SPIHT以及深度学习方法相比,在Landsat-8的7波段和Sentinel-2的8波段数据集上所提出模型的峰值信噪比(PSNR)指标高于传统算法1-2dB。在平均光谱角度(MSA)指标的衡量下,所提出的模型在Landsat-8数据集上优于传统算法约8×10^(-3)rad,在Sentinel-2数据集上优于传统算法约2×10^(-3)rad。满足了多光谱图像压缩对空间和光谱间特征提取以及局部特征提取的要求。 展开更多
关键词 空间光谱间特征 非对称卷积 卷积神经网络 光谱图像压缩
在线阅读 下载PDF
卷积神经网络的紫外-可见光谱水质分类方法 被引量:6
3
作者 陈庆 汤斌 +6 位作者 龙邹荣 缪俊锋 黄子恒 戴若辰 石胜辉 赵明富 钟年丙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第3期731-736,共6页
水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经... 水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经网络处理紫外-可见光谱数据。为验证检测一维卷积神经网络对地表水光谱信号分类的可行性,选取长江的某段流域作为取样点。采集当天的长江上游水、某河水、嘉陵江水,生活污水、500 mg·L^(-1)邻苯二甲酸氢钾溶液来模拟污染水源。将几种水样按不同的配比来模拟当天该流域的水污染变化情况。采集现有的单一水样及混合配比水样的光谱数据,根据各类水样的特征光谱信息进行区分,实现地表水高锰酸盐指数的预测分类,快速确定异常水样的污染来源,通过仿真实验,优化模型参数并完成优化训练。与K最邻近法、支持向量机等传统分类方法相比,该算法在光谱预处理复杂度和定性分析准确度方面有较大优势,在没有复杂的数据预处理前提下,将获取的350条光谱数据建立水质分类模型,随机选择其中245条数据作为训练集,另105条数据作为测试集,模型的混淆矩阵分类精度达99.0%。不仅简化了整个光谱分析流程,而且能保留更多的有效光谱信息,减小人为预处理对紫外-可见光谱数据的影响,实现地表水高锰酸盐指数的准确分类。实验结果表明该方法可对不同水体水样进行准确分类,快速定位污染源,为无法激发荧光的污染物溯源提供了科学依据,为与三维荧光技术辅助配合快速精确定位地表水污染源提供了可能,同时表明了深度学习在紫外-可见光谱法测量实际水样领域有着巨大的应用潜力和研究价值。 展开更多
关键词 水质 紫外-可见光谱 一维卷积神经网络 分类
在线阅读 下载PDF
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络 被引量:4
4
作者 时旭 李远 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2022年第8期960-969,共10页
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可... 深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能。根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类。在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%。与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能。在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%。实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间。 展开更多
关键词 光谱图像 血细胞分类 卷积神经网络 -谱联合距离 可分离卷积
在线阅读 下载PDF
面向高光谱图像分类的局部Gabor卷积神经网络
5
作者 王燕 王丽 《计算机科学》 CSCD 北大核心 2020年第6期151-156,共6页
针对高光谱图像特征利用不足的问题,提出了一种新的基于空谱联合特征的高光谱图像分类方法。该方法首先利用主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)对高光谱图像进行组合降维;... 针对高光谱图像特征利用不足的问题,提出了一种新的基于空谱联合特征的高光谱图像分类方法。该方法首先利用主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)对高光谱图像进行组合降维;其次引入Gabor核,设计了一种基于Gabor核的卷积(Local Gabor Convolutional,LGC)层;最后基于LGC层设计了一个新的卷积神经网络(Local Gabor Convolutional Neural Network,LGCNN)进行分类。在Indian Pines和Salinas Scene数据集上对所提方法进行验证,并将其与其他经典分类方法进行比较。实验结果表明,该方法不仅能大幅度减少可学习的参数,降低模型复杂度,而且具备较好的分类性能,其总体精度达到99%,平均分类精度达到98%以上,Kappa系数达到98%以上。 展开更多
关键词 光谱图像分类 GABOR滤波 空间-光谱信息 卷积神经网络 深度学习
在线阅读 下载PDF
混合卷积神经网络的高光谱图像分类方法 被引量:7
6
作者 刘翠连 陶于祥 +1 位作者 罗小波 李青妍 《激光技术》 CAS CSCD 北大核心 2022年第3期355-361,共7页
为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出... 为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出一种3维-2维卷积神经网络混合结构,得到增强后的空间信息;其次从光谱-空间角度利用3维卷积网络结构,得到光谱-空间的综合可分性信息;最后将所得信息进行特征融合并分类。用该方法在两个数据集上进行了实验并与其它方法进行了对比。结果表明,该方法在Indian Pines与Pavia University数据集上分别取得了99.36%和99.95%的分类精度,其分类精度和kappa系数都优于其它方法。该方法对高光谱图像的分类表现出竞争优势。 展开更多
关键词 遥感 光谱图像分类 混合卷积神经网络 光谱-空间特征 特征提取
在线阅读 下载PDF
基于双分支卷积神经网络的SAR与多光谱图像融合实验 被引量:7
7
作者 吴佼华 杨学志 +1 位作者 方帅 董张玉 《地理与地理信息科学》 CSCD 北大核心 2021年第2期22-30,共9页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)和多光谱(Multi-Spectral,MS)融合图像中存在的空间细节模糊和颜色失真问题,该文兼顾光谱监督和空间细节监督,设计光谱损失函数和空间细节损失函数,提出一种基于双分支卷积神经网络(Conv... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)和多光谱(Multi-Spectral,MS)融合图像中存在的空间细节模糊和颜色失真问题,该文兼顾光谱监督和空间细节监督,设计光谱损失函数和空间细节损失函数,提出一种基于双分支卷积神经网络(Convolution Neural Network,CNN)的SAR和MS图像融合算法。该算法网络框架包含光谱保持和细节提升两个分支:光谱保持分支通过上采样MS图像连接到网络的输出,直接将光谱信息传递到融合图像中;细节提升分支对SAR和MS图像通过高通滤波提取高频细节信息,然后应用CNN对细节信息进行特征提取、特征融合及重建,最后将重建的细节信息叠加到上采样的MS图像,得到融合结果。以哨兵-1B GRD级别的SAR图像和Landsat8卫星多光谱图像为实验数据,通过与传统融合算法和深度学习算法RSIFNN进行对比,结果表明,该文算法在定性和定量评价方面效果更好,能够在保持光谱信息的基础上增强多光谱图像的空间细节信息,有利于后续地物分类和目标识别等工作的开展。 展开更多
关键词 合成孔径雷达图像 光谱图像 图像融合 空间细节信息 卷积神经网络
在线阅读 下载PDF
基于空洞卷积神经网络的毒株胚蛋裂纹分割
8
作者 耿磊 张静 +1 位作者 肖志涛 童军 《天津工业大学学报》 CAS 北大核心 2022年第3期69-75,共7页
针对工厂机械设备的噪声和振动、胚蛋蛋壳表面的污斑和裂纹大小、光源打光方式会对裂纹检测产生严重影响,提出一种基于密集空洞卷积模块(DACM)与空洞空间金字塔池化结构(ASPP)的卷积神经网络(CNN)分割方法分割胚蛋裂纹。采用编码器-解... 针对工厂机械设备的噪声和振动、胚蛋蛋壳表面的污斑和裂纹大小、光源打光方式会对裂纹检测产生严重影响,提出一种基于密集空洞卷积模块(DACM)与空洞空间金字塔池化结构(ASPP)的卷积神经网络(CNN)分割方法分割胚蛋裂纹。采用编码器-解码器网络结构与密集连接的空洞卷积结合,增强空间信息表示并重建不同尺度目标信息;同时,在网络浅层引入ASPP,获取多尺度特征,增强细节信息,提高网络分割性能。结果表明:在自制毒株胚蛋顶部裂纹与侧面裂纹数据集上,该方法的平均交并比(MIoU)分别达到了74.2%与81.3%,具有较强的鲁棒性。 展开更多
关键词 毒株胚蛋裂纹分割 卷积神经网络 编码器-解码器 空洞卷积 空洞空间金字塔池化
在线阅读 下载PDF
半监督卷积神经网络遥感图像融合 被引量:6
9
作者 杜晨光 胡建文 胡佩 《电子测量与仪器学报》 CSCD 北大核心 2021年第6期63-70,共8页
近几年随着深度学习的发展,学者们利用卷积神经网络实现遥感图像融合取得了不错的效果。由于没有高分辨率多光谱图像作为参考图像,所以一般基于深度学习的方法在退化图像上训练模型,然后用训练好的模型去预测高分辨率多光谱图像,但是退... 近几年随着深度学习的发展,学者们利用卷积神经网络实现遥感图像融合取得了不错的效果。由于没有高分辨率多光谱图像作为参考图像,所以一般基于深度学习的方法在退化图像上训练模型,然后用训练好的模型去预测高分辨率多光谱图像,但是退化图像的融合过程并不能完全反映原始图像的融合过程。为了改善融合性能,提出了一种半监督卷积神经网络遥感图像融合方法,该方法在退化图像和原始图像上使用同一个融合网络同时进行训练。退化图像的融合具有相应的参考图像,采用常规的监督学习方式对融合网络进行训练,还加入了光谱损失来更好的保持光谱信息。而原始图像的融合不存在高分辨率多光谱参考图像,设计了光谱退化网络和空间退化网络对融合图像进行退化,再训练融合网络。实验结果表明,提出的方法光谱与细节保真效果好,优于对比方法。 展开更多
关键词 卷积神经网络 半监督 遥感图像融合 光谱退化网络 空间退化网络
在线阅读 下载PDF
具有空间-通道重构卷积模块的肺音分类模型
10
作者 叶娜 吴辰文 蒋佳霖 《南方医科大学学报》 CAS CSCD 北大核心 2024年第9期1720-1728,共9页
目的探究肺音数据的准确识别及分类。方法本文提出了一种结合空间-通道重构卷积(SCConv)模块的卷积网络架构以及双可调Q因子小波变换(DTQWT)与三重Wigner-Ville变换(WVT)结合的肺音特征提取方法,通过自适应地聚焦于重要的通道和空间特征... 目的探究肺音数据的准确识别及分类。方法本文提出了一种结合空间-通道重构卷积(SCConv)模块的卷积网络架构以及双可调Q因子小波变换(DTQWT)与三重Wigner-Ville变换(WVT)结合的肺音特征提取方法,通过自适应地聚焦于重要的通道和空间特征,提高模型对肺音关键特征的捕捉能力。基于ICBHI2017数据集,进行正常音、哮鸣音、爆裂音、哮鸣音和爆裂音结合的分类。结果方法在分类的准确率、敏感性、特异性以及F1分数上分别达到85.68%、93.55%、86.79%、90.51%。结论所提方法在ICBHI 2017肺音数据库上取得了优异的性能,特别是在区分正常肺音和异常肺音方面。 展开更多
关键词 肺音分类 卷积神经网络 空间-通道重构卷积 双可调Q因子小波变换 三重Wigner-Ville变换
在线阅读 下载PDF
面向稀土矿区高光谱精细分类的多层注意力卷积神经网络模型
11
作者 范晓勇 李恒凯 +3 位作者 刘锟铭 王秀丽 于阳 李潇雨 《光谱学与光谱分析》 2025年第9期2666-2675,共10页
离子吸附型稀土矿是重要的战略资源,长期的粗放式开采导致矿区地表覆盖遭到严重破坏,生态环境面临严重挑战。准确精细的土地利用信息是矿区生态恢复和过程监管的重要基础,利用高光谱影像获取土地利用信息被认为是准确监测大范围矿区的... 离子吸附型稀土矿是重要的战略资源,长期的粗放式开采导致矿区地表覆盖遭到严重破坏,生态环境面临严重挑战。准确精细的土地利用信息是矿区生态恢复和过程监管的重要基础,利用高光谱影像获取土地利用信息被认为是准确监测大范围矿区的有效手段。然而,稀土矿区的地物复杂性和高光谱图像的信息冗余给其精细分类带来了挑战。本研究构建了一种基于面向对象思想和多层注意力卷积神经网络的稀土矿区精细分类方法。首先利用尺度参数估计模型定量分析了稀土矿区影像的多层次最优分割尺度,并获取了分割影像中的光谱、指数、纹理、几何4类影像特征,然后基于距离可分性分析得到了最优特征组合,在此基础上应用多层注意力卷积神经网络(OCTC)模型完成分类,该模型由一维卷积神经网络(1D-CNN)改进而来,通过引进Transformer和CBAM提升模型的特征提取能力和整体分类精度。为验证方法的有效性,以“珠海一号”高光谱遥感影像作为数据源,以江西赣南岭北稀土矿区作为研究区域进行实际验证,并与KNN、RF和1D-CNN分类方法进行精度对比分析。结果表明,该分类方法有效避免了椒盐现象的出现,分类整体性好,并且改进后的多层注意力卷积神经网络模型获得了最佳的分类精度,其总体精度可达88.11%,较其他分类方法提高1.22%~8.84%,Kappa系数提高了0.0159~0.1090。该方法能为稀土矿区的土地利用精细化分类与生产监测、环境保护管理提供方法借鉴与科学参考。 展开更多
关键词 面向对象-卷积神经网络 珠海一号 光谱遥感 离子型稀土 土地利用
在线阅读 下载PDF
基于拉曼光谱结合CNN-LSTM深度学习方法的铁皮石斛总黄酮含量快速检测研究 被引量:3
12
作者 刘宗溢 张彩虹 +4 位作者 蒋健康 沈斌国 丁艳菲 张雷蕾 朱诚 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第4期1018-1024,共7页
铁皮石斛具有很高的商业价值和营养价值,将云南文山、广西金秀、安徽霍山、浙江台州四个产地共130个样品作为研究样本,在785 nm激光下利用便携式拉曼光谱仪获得了铁皮石斛拉曼光谱,采用NaNO_(2)-Al(NO_(3))_(3)-NaOH比色法测定铁皮石斛... 铁皮石斛具有很高的商业价值和营养价值,将云南文山、广西金秀、安徽霍山、浙江台州四个产地共130个样品作为研究样本,在785 nm激光下利用便携式拉曼光谱仪获得了铁皮石斛拉曼光谱,采用NaNO_(2)-Al(NO_(3))_(3)-NaOH比色法测定铁皮石斛总黄酮含量。以每条经过归一化后的拉曼光谱数据作为输入,利用Savitzky-Golay卷积平滑(SG平滑)、标准正态变量变换(SNV)、多元散射校正(MSC)等不同预处理方法对光谱数据进行处理,以偏最小二乘(PLS)、支持向量机(SVM)和卷积神经网络-长短期记忆神经网络(CNN-LSTM)模型作为比较,竞争自适应重加权采样(CARS)作为波长选择方法,对不同的机器学习模型进行比较研究。采用以下预测质量指标:校正集、测试集相关系数(R_(c)、R_(p)),校正集、测试集均方根误差(RMSEC、RMSEP),评价铁皮石斛总黄酮含量预测模型的性能。结果表明:光谱在经过SNV预处理之后,CNN-LSTM方法预测铁皮石斛总黄酮含量准确率最高,R_(c)、R_(p)分别为0.983和0.964,RMSEC、RMSEP分别为0.032和0.047 mg·g^(-1)。结合拉曼光谱建立的SNV-CNN-LSTM深度学习模型准确可靠,具有很强的鲁棒性,优于传统的机器学习模型(PLS、SVM)。利用拉曼光谱结合CNN-LSTM模型对铁皮石斛总黄酮含量进行预测,克服了传统的理化鉴别法的缺陷,具有快速无损的特点。该方法能对铁皮石斛的品质进行区分,并加快药食同源植物市场铁皮石斛产业化,构建自主品牌并增加其影响力,同时此项技术也可应用于消费者和市场监管部门。 展开更多
关键词 铁皮石斛 拉曼光谱 卷积神经网络-长短期记忆神经网络 总黄酮含量 快速检测
在线阅读 下载PDF
MS-2HCNN:基于深度学习的高光谱图像信号分类方法 被引量:2
13
作者 吕龙龙 卢伟 秦丽娜 《传感技术学报》 CAS CSCD 北大核心 2024年第1期111-120,共10页
为了能更准确地提取与合并高光谱图像信号中的空间与光谱特征,提出了一种MS-2HCNN结构(Multi Stage-Heightened&Hyperspectral convolutional neural network)。MS-2HCNN通过融合不同的卷积层结果获得了更具判别性的特征,还通过将... 为了能更准确地提取与合并高光谱图像信号中的空间与光谱特征,提出了一种MS-2HCNN结构(Multi Stage-Heightened&Hyperspectral convolutional neural network)。MS-2HCNN通过融合不同的卷积层结果获得了更具判别性的特征,还通过将提取到的光谱和空间信息进行了串接,简化了计算,保证了准确性和可靠的分类性能。此外,提出的多阶段设计可以将上层获得的背景信息与下层获得的精确空间信息相结合,使得它在准确性和复杂度方面比现有的方法更有优势。最后,为了应对样本特征比问题,引入了复杂度更优、精度更好的网络优化器,加之采用的批量归一化方法减少了MS-2HCNN的模型参数并提高了其拟合能力。在不同开源数据集上的分类结果表明了所提方法的有效性。 展开更多
关键词 人工智能 空间特征 光谱特征 卷积神经网络
在线阅读 下载PDF
基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法
14
作者 吴至境 刘富强 +1 位作者 李志刚 陈慧 《食品科学》 EI CAS 北大核心 2025年第2期214-221,共8页
针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立... 针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立一维卷积神经网络回归(one dimensional-convolutional neural networks regression,1D-CNNR)模型以提高模型的预测精度和泛化能力。为了比较,分别建立偏最小二乘回归(partial least squares regression,PLSR)模型和支持向量机回归(support vector regression,SVR)模型。将原始80个样品数据集、1000个样品的DCGAN扩充数据集和1080个样品的合并数据集,分别结合1D-CNNR、SVR及PLSR进行建模与预测。为了进一步验证模型的泛化能力,一批新的总数为40个样品的樱桃番茄数据作为上述3个模型的新测试集。结果显示,使用合并数据集划分所得校正集进行1D-CNNR建模后,模型为最优的SSC回归检测模型。此时1D-CNNR面向合并样品测试集的预测准确率最高,预测相关系数r_(p)=0.9807,均方根误差RMSE_(p)=0.1929;与SVR与PLSR对比,1D-CNNR面向新的40个样品数据集的预测准确率也最高,其r_(p)=0.9638,RMSE_(p)=0.2245。本研究可为有效准确检测樱桃番茄的可溶性固形物含量提供一种新思路。 展开更多
关键词 樱桃番茄 可溶性固形物含量 可见-近红外漫反射光谱 深度卷积生成对抗网络 一维卷积神经网络
在线阅读 下载PDF
基于紫外-可见光谱与深度学习CNN算法的水质COD预测模型研究 被引量:10
15
作者 贾文珅 张恒之 +3 位作者 马洁 梁刚 王纪华 刘鑫 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第9期2981-2988,共8页
水是生命之源,作为人类生活的必需品,水质的优劣直接关系到人们的健康生活。目前,关于水质COD在线检测方法的研究主要集中在光谱数据预处理和光谱特征提取,而针对光谱数据建模方法的研究较少。卷积神经网络(CNN)作为目前深度学习领域应... 水是生命之源,作为人类生活的必需品,水质的优劣直接关系到人们的健康生活。目前,关于水质COD在线检测方法的研究主要集中在光谱数据预处理和光谱特征提取,而针对光谱数据建模方法的研究较少。卷积神经网络(CNN)作为目前深度学习领域应用最广泛的网络模型,具有强大的特征提取和特征映射能力,本文将CNN与紫外-可见光谱分析法相结合,建立了基于CNN的水质COD紫外-可见光谱预测模型。模型使用Savitzky-Golay平滑滤波方法去除光谱噪声,光谱输入卷积层提取光谱数据特征、池化层降维、全连接层映射全局特征,通过ReLU和Adam优化方法,从而得到模型的预测值。通过实验发现, CNN模型具有较强的水质COD预测能力,具有较高的预测精度和回归拟合优度,通过与BP, PCA-BP, PLSR和RF等模型比较后发现, CNN模型的预测样本的RMSEP和MAE最小,R2最大,模型拟合效果最优。在与训练样本的模型效果评价对比后发现,模型具有较强的泛化能力。针对吸收光谱的波峰偏移对预测结果所造成的预测结果不准确的问题,作者还提出了一种基于CNN的分类回归模型卷积神经网络增强模型(CNNs),去噪后的光谱数据通过CNN分类模型按照吸收波峰的不同特征分为三类,分别输入对应CNN回归模型进行预测。实验结果表明,分段式CNNs模型比整体式CNN模型的拟合效果更好,预测精度更高,R2达到0.999 1,测试样本的MAE和RMSEP分别为2.314 3和3.874 5,比CNN分别下降了25.9%和21.33%,效果显著。通过对预测模型的性能测试,计算得出检出限为0.28mg·L^-1,测量范围为2.8~500mg·L^-1。本文创新的将卷积神经网络与光谱分析方法相结合,为光谱分析方法在水质COD吸收光谱建模的应用开拓了新思路。 展开更多
关键词 紫外-可见光谱 卷积神经网络 化学需氧量 预测模型
在线阅读 下载PDF
高空间分辨率高可见度的太赫兹光谱成像研究 被引量:2
16
作者 褚致弘 张逸竹 +2 位作者 曲秋红 赵晋武 何明霞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第2期356-362,共7页
太赫兹光谱成像,不但包括在二维图像空间的强度信息,同时可以得到太赫兹波段的光谱信息,构成了一个三维的数据矩阵。由于受到太赫兹成像系统内部硬件的限制和影响,太赫兹频域较高频段处信号存在能量弱、信噪比低的特点,导致所成的太赫... 太赫兹光谱成像,不但包括在二维图像空间的强度信息,同时可以得到太赫兹波段的光谱信息,构成了一个三维的数据矩阵。由于受到太赫兹成像系统内部硬件的限制和影响,太赫兹频域较高频段处信号存在能量弱、信噪比低的特点,导致所成的太赫兹图像普遍存在分辨率低、对比度低等问题。因此,利用三维数据矩阵,应用适合的算法,实现了提高太赫兹光谱成像空间分辨率、边缘细节可见度的目的。搭建了三维可移动式太赫兹时域光谱成像系统,实现了对标准高分辨率板的二维扫描。对该系统所采集到的信号分别进行时域、频域等多种方式成像对比,结合瑞利判据和分辨率标尺对成像系统的空间分辨率、景深进行标定,研究了提高太赫兹光谱成像的空间分辨率算法。然后,针对太赫兹频域高频区域信噪比低、对比度低、噪声原因复杂的特点,结合深度残差学习的图像去噪理论,提出了太赫兹图像深度去噪网络,在训练集中引入成像系统中真实的“太赫兹残差噪声”。最后,利用所训练出的模型对太赫兹频域高频区域图像进行盲去噪,并用重建图像分别与原始成像结果和传统太赫兹去噪算法结果进行比较,分别从主观和客观两个方面评价了不同算法对太赫兹频域高频图像的去噪效果。实验结果表明,通过该算法实现了极限空间分辨率约为157μm,去噪后图像极限空间分辨率处的瑞利判据鞍-峰比约为0.623,图像整体对比度为46.635;空间分辨率相比传统成像方法提高了约一倍,对比度提高约26%。研究结果为高空间分辨率高可见度的太赫兹光谱成像方式提供了一种新的规范,并针对太赫兹频域较高频区域的图像噪声问题提供了一种新的解决方案。 展开更多
关键词 太赫兹光谱成像 空间分辨率 图像去噪 深度卷积神经网络
在线阅读 下载PDF
融合声振信号与可见近红外透射光谱的苹果轻度霉心病检测 被引量:1
17
作者 谷家辉 赖丽思 +1 位作者 王凯 张慧 《食品科学》 EI CAS CSCD 北大核心 2024年第23期259-267,共9页
针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段... 针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段的选择。针对声振信号,利用YSV工程测试与信号分析软件和Pearson相关系数优选7个时域特征。随后,通过特征拼接将光谱特征波段与时域特征组成融合特征向量,分别采用卷积神经网络(convolutional neural networks,CNN)、长短时记忆网络(long short-term memory,LSTM)和CNN-LSTM基于单一源特征和融合特征构建判别模型。通过模型性能分析,融合了近红外透射光谱15个特征波段与7个时域特征的CNN-LSTM组合模型对于轻度霉心病的判别性能最优,测试集的准确率、召回率、特异性和F1分数分别达到了98.31%、97.06%、97.06%和97.90%。实验结果证明本研究提出的可见近红外透射光谱与声振信号特征融合方法可以有效提高苹果轻度霉心病的判别准确率。 展开更多
关键词 可见近红外透射光谱 声振信号 苹果霉心病 特征融合 卷积神经网络-长短时记忆网络
在线阅读 下载PDF
融合注意力空洞残差网络的高光谱图像分类方法 被引量:4
18
作者 骆继明 朱彤珺 +4 位作者 黄明明 黄全振 张洋 赵俊皓 杨镰朴 《中国测试》 CAS 北大核心 2023年第10期111-119,共9页
针对高光谱图像数据高维的特点,为进一步提高图像分类准确率,设计一种融合注意力机制的三维空洞卷积神经网络模型用于高光谱分类问题。该方法以3D卷积为基础,使用多尺寸卷积核策略,从不同尺度提取高光谱图像的特征信息;使用空洞结构卷积... 针对高光谱图像数据高维的特点,为进一步提高图像分类准确率,设计一种融合注意力机制的三维空洞卷积神经网络模型用于高光谱分类问题。该方法以3D卷积为基础,使用多尺寸卷积核策略,从不同尺度提取高光谱图像的特征信息;使用空洞结构卷积核,可有效提取特征信息,同时增加网络的感受野。提出一种空间-光谱注意力模块,自适应聚焦信息,增加高光谱图像空间、光谱的特征表达能力。提出的方法在University of Pavia和Indian Pines等公开数据集上测试,分别取得99.61%、99.58%的总体分类准确率。与SVM、2D-CNN、3D-CNN、RES-3D-CNN算法进行比较,该文提出的算法在准确率和分类性能上优于其他算法。 展开更多
关键词 图像分类 光谱图像 神经网络 空间-光谱注意力 多尺度
在线阅读 下载PDF
基于拉曼光谱技术药物包衣厚度分布预测模型的构建
19
作者 王学重 王亦卓 +2 位作者 张冉 侯光昊 吴韬 《高校化学工程学报》 EI CAS CSCD 北大核心 2024年第5期781-787,共7页
为了实现药物包衣层厚度分布的实时在线检测,解决离线检测平均厚度或称重不能满足均匀性分析及判断终点等问题,以蛋白哂双凸片的包衣过程为例,采用探头式拉曼光谱仪实时在线采集片剂表面拉曼光谱的同时,离线采集并统计包衣层厚度分布。... 为了实现药物包衣层厚度分布的实时在线检测,解决离线检测平均厚度或称重不能满足均匀性分析及判断终点等问题,以蛋白哂双凸片的包衣过程为例,采用探头式拉曼光谱仪实时在线采集片剂表面拉曼光谱的同时,离线采集并统计包衣层厚度分布。分别采用偏最小二乘法(PLS)和卷积神经网络(CNN)两种方法建立包衣厚度定量校正模型。结果表明,PLS模型预测相关性Rp2为0.923,CNN模型Rp2高达0.996,其模型的泛化能力更高,较PLS模型展现出更好的准确性。且CNN模型预测的包衣层厚度分布与离线统计的厚度分布结果较为一致(包衣时间为60 min,最可几厚度和分布宽度偏差仅为0.44%和1.24%),实现了药物包衣层厚度分布的准确预测。 展开更多
关键词 在线拉曼光谱 包衣厚度统计分布 偏最小二乘法 主成分分析-卷积神经网络 包衣均匀性
在线阅读 下载PDF
混合深度CNN联合注意力的高光谱图像分类 被引量:9
20
作者 王燕 吕艳萍 《计算机科学与探索》 CSCD 北大核心 2023年第2期385-395,共11页
深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出... 深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出了混合深度卷积联合注意力(HDC-Attention)的模型。首先利用核主成分分析(KPCA)和小批量K均值(MBK-means)对高光谱图像进行组合降维,有效地消除数据冗余并保留主要信息量,使得降维后的数据具有最佳区分度。然后将降维后的数据输入HDC网络进行充分的光谱-空间特征提取。最后利用光谱-空间注意力,重新分配光谱-空间特征的权重,增强有用的空谱特征,抑制无用的特征。提出的模型在三个公开数据集上进行了多次实验,在有限的标记样本下,三个数据集的OA、AA、Kappa分类指标均超过99%。 展开更多
关键词 光谱图像分类 核主成分分析(KPCA) 卷积神经网络(CNN) 光谱-空间注意力机制 深度学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部