期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
半监督卷积神经网络遥感图像融合 被引量:6
1
作者 杜晨光 胡建文 胡佩 《电子测量与仪器学报》 CSCD 北大核心 2021年第6期63-70,共8页
近几年随着深度学习的发展,学者们利用卷积神经网络实现遥感图像融合取得了不错的效果。由于没有高分辨率多光谱图像作为参考图像,所以一般基于深度学习的方法在退化图像上训练模型,然后用训练好的模型去预测高分辨率多光谱图像,但是退... 近几年随着深度学习的发展,学者们利用卷积神经网络实现遥感图像融合取得了不错的效果。由于没有高分辨率多光谱图像作为参考图像,所以一般基于深度学习的方法在退化图像上训练模型,然后用训练好的模型去预测高分辨率多光谱图像,但是退化图像的融合过程并不能完全反映原始图像的融合过程。为了改善融合性能,提出了一种半监督卷积神经网络遥感图像融合方法,该方法在退化图像和原始图像上使用同一个融合网络同时进行训练。退化图像的融合具有相应的参考图像,采用常规的监督学习方式对融合网络进行训练,还加入了光谱损失来更好的保持光谱信息。而原始图像的融合不存在高分辨率多光谱参考图像,设计了光谱退化网络和空间退化网络对融合图像进行退化,再训练融合网络。实验结果表明,提出的方法光谱与细节保真效果好,优于对比方法。 展开更多
关键词 卷积神经网络 半监督 遥感图像融合 光谱退化网络 空间退化网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部