期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
光神经形态计算研究进展与展望(特邀) 被引量:9
1
作者 项水英 宋紫薇 +4 位作者 高爽 韩亚楠 张雅慧 郭星星 郝跃 《光子学报》 EI CAS CSCD 北大核心 2021年第10期30-46,共17页
脑科学与类脑研究是国际必争战略性前沿。人工智能与深度学习的飞速发展对算力提出了迫切需求。而传统的冯诺依曼架构,由于存算分离导致功耗墙和内存墙,摩尔定律也逐渐放缓。光神经拟态计算充分融合高速光通信、光互连、光集成、硅基光... 脑科学与类脑研究是国际必争战略性前沿。人工智能与深度学习的飞速发展对算力提出了迫切需求。而传统的冯诺依曼架构,由于存算分离导致功耗墙和内存墙,摩尔定律也逐渐放缓。光神经拟态计算充分融合高速光通信、光互连、光集成、硅基光电子与神经拟态计算的特点,具有超高速、大带宽、多维度等优势,在高性能计算、人工智能领域有广阔的应用前景,是突破后摩尔时代传统微电子计算极限极具竞争力的方案。本文回顾了国内外主要研究团队在光神经元、光突触、光神经网络的理论、算法及器件方面的工作,并提出了展望。 展开更多
关键词 神经形态计算 神经 突触 突触可塑性 光神经网络
在线阅读 下载PDF
Experimental study of laser cladding process and prediction of process parameters by artificial neural network(ANN) 被引量:3
2
作者 Rashi TYAGI Shakti KUMAR +2 位作者 Mohammad Shahid RAZA Ashutosh TRIPATHI Alok Kumar DAS 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3489-3502,共14页
Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combin... Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm. 展开更多
关键词 laser cladding Taguchi orthogonal array artificial neural network MICROHARDNESS MICROSTRUCTURE
在线阅读 下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
3
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部