The utilization of solar energy for hydrogen production via water splitting has garnered considerable attention in the realm of renewable energy.Si nanowires photocathodes own the advantages of effective photon absorp...The utilization of solar energy for hydrogen production via water splitting has garnered considerable attention in the realm of renewable energy.Si nanowires photocathodes own the advantages of effective photon absorption,non toxicity and industrial applicability.Nevertheless,the photoelectrocatalytic(PEC)performance of Si nanowires photocathodes is still limited by ineffective or deficient active sites on their surfaces.Here,we develop an efficient Si based photocathode modified with Al-porphyrin-based MOF(Al-PMOF),consisted of an earth-abundant metal containing Al(OH)O_(4) cluster bridged by 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin.The assembled Al-PMOF significantly enhances the photocurrent density of bare Si nanowires photocathodes,resulting in a twofold increase under equivalent conditions,alongside a positive shift of 200 mV in the onset potential of the Si/Al-PMOF photocathode.The improved PEC hydrogen evolution performance is ascribed to accelerate surface charge transfer of Si photocathode and provision of favorable active site for the hydrogen evolution reaction.This work provides insights into the fabrication of semiconductor/molecule catalyst hybrid photocathodes,thus facilitating the realization of high-efficiency PEC water splitting.展开更多
基金the financial support from Australian Research Council through its DP and FF programsthe support from Australian Government Research Training Program and UQ Centennial Scholarships
基金Project(22078368)supported by the National Natural Science Foundation of China。
文摘The utilization of solar energy for hydrogen production via water splitting has garnered considerable attention in the realm of renewable energy.Si nanowires photocathodes own the advantages of effective photon absorption,non toxicity and industrial applicability.Nevertheless,the photoelectrocatalytic(PEC)performance of Si nanowires photocathodes is still limited by ineffective or deficient active sites on their surfaces.Here,we develop an efficient Si based photocathode modified with Al-porphyrin-based MOF(Al-PMOF),consisted of an earth-abundant metal containing Al(OH)O_(4) cluster bridged by 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin.The assembled Al-PMOF significantly enhances the photocurrent density of bare Si nanowires photocathodes,resulting in a twofold increase under equivalent conditions,alongside a positive shift of 200 mV in the onset potential of the Si/Al-PMOF photocathode.The improved PEC hydrogen evolution performance is ascribed to accelerate surface charge transfer of Si photocathode and provision of favorable active site for the hydrogen evolution reaction.This work provides insights into the fabrication of semiconductor/molecule catalyst hybrid photocathodes,thus facilitating the realization of high-efficiency PEC water splitting.