Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared ab...A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.展开更多
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
文摘A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.