近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套...近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套适用于高能电弧故障冲击的结构失效仿真计算方法。首先,建立有限腔体内油中电弧能量持续注入的气泡动力学模型,准确描述故障气泡的脉动膨胀行为;其次,提出自适应有限元-光滑粒子流体动力学(finite element method-smoothed particle hydrodynamics,FEM-SPH)耦合方法,利用SPH粒子继承失效前的物理信息参与FEM计算;进行不同能量、不同位置的电弧故障仿真计算,获得换流变压器结构的薄弱区域及其破裂行为,复现了油箱结构失效行为。研究发现,油箱顶盖两侧及侧壁转角接缝位置容易发生应力集中现象。一旦结构出现裂缝,将在极短时间内沿着应力集中方向快速发展,最终导致壁面整体撕裂。可知,该方法揭示的结构失效行为可为改进变压器设计和提高设备安全性提供依据。展开更多
高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框...高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。展开更多
基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的...基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。展开更多
粒子浆液射流破岩过程涉及大变形、高应变及强载荷,表现为钢粒-浆液-岩石之间非线性动态耦合问题。针对岩石损伤瞬时多变性及观测困难等问题,开展了粒子与浆液射流冲击下岩石的动态损伤机理及破坏效应研究。首先,基于光滑粒子动力学-有...粒子浆液射流破岩过程涉及大变形、高应变及强载荷,表现为钢粒-浆液-岩石之间非线性动态耦合问题。针对岩石损伤瞬时多变性及观测困难等问题,开展了粒子与浆液射流冲击下岩石的动态损伤机理及破坏效应研究。首先,基于光滑粒子动力学-有限元模拟(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合算法描述了粒子-浆液冲击破岩的建模方法;然后,结合JH-Ⅱ(Johnson-Holmquist-Ⅱ)模型与Rankine拉伸断裂软化模型建立了岩石损伤本构模型,对粒子浆液射流冲击破岩过程及损伤机理进行了动态模拟。研究结果表明:岩石的损伤破坏主要以纵向扩展为主,具有瞬时性与阶跃性特征,呈现出“从累积损伤到不断破坏”的循环过程;岩石破坏机理以剪切破碎和拉伸裂纹为主。同时,通过试验和数值模拟对比验证了破岩样本的形态,并分析了冲击速度、角度与粒子尺寸对破岩效应的影响规律。研究结果对于粒子浆液冲击钻井破岩理论的发展具有重要意义。展开更多
设计满足鸟撞适航条款要求的飞机薄壁结构,必须进行典型薄壁结构抗鸟撞动响应试验及数值模拟研究。对某飞机机头上壁板薄壁结构进行了鸟撞试验,并采用光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element meth...设计满足鸟撞适航条款要求的飞机薄壁结构,必须进行典型薄壁结构抗鸟撞动响应试验及数值模拟研究。对某飞机机头上壁板薄壁结构进行了鸟撞试验,并采用光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM),基于商用显式有限元分析软件PAM-CRASH,建立了鸟撞上壁板薄壁结构数值计算模型。计算结果表明,上壁板结构损伤模式主要包括蒙皮撕裂和铆钉断裂,计算结果与试验结果良好的一致性验证了该数值计算模型及方法的合理性。在此基础上,建立了鸟撞典型薄壁结构数值计算模型,研究了鸟弹不同撞击角度和速度下典型薄壁结构蒙皮极限厚度值,结果表明,随着撞击速度的增大,蒙皮极限厚度的变化对撞击角度十分敏感。拟合了典型薄壁结构蒙皮极限厚度与鸟弹撞击角度和速度之间的数学关系,为飞机薄壁结构抗鸟撞设计提供技术支撑。展开更多
文摘近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套适用于高能电弧故障冲击的结构失效仿真计算方法。首先,建立有限腔体内油中电弧能量持续注入的气泡动力学模型,准确描述故障气泡的脉动膨胀行为;其次,提出自适应有限元-光滑粒子流体动力学(finite element method-smoothed particle hydrodynamics,FEM-SPH)耦合方法,利用SPH粒子继承失效前的物理信息参与FEM计算;进行不同能量、不同位置的电弧故障仿真计算,获得换流变压器结构的薄弱区域及其破裂行为,复现了油箱结构失效行为。研究发现,油箱顶盖两侧及侧壁转角接缝位置容易发生应力集中现象。一旦结构出现裂缝,将在极短时间内沿着应力集中方向快速发展,最终导致壁面整体撕裂。可知,该方法揭示的结构失效行为可为改进变压器设计和提高设备安全性提供依据。
文摘高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。
文摘基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。
文摘粒子浆液射流破岩过程涉及大变形、高应变及强载荷,表现为钢粒-浆液-岩石之间非线性动态耦合问题。针对岩石损伤瞬时多变性及观测困难等问题,开展了粒子与浆液射流冲击下岩石的动态损伤机理及破坏效应研究。首先,基于光滑粒子动力学-有限元模拟(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合算法描述了粒子-浆液冲击破岩的建模方法;然后,结合JH-Ⅱ(Johnson-Holmquist-Ⅱ)模型与Rankine拉伸断裂软化模型建立了岩石损伤本构模型,对粒子浆液射流冲击破岩过程及损伤机理进行了动态模拟。研究结果表明:岩石的损伤破坏主要以纵向扩展为主,具有瞬时性与阶跃性特征,呈现出“从累积损伤到不断破坏”的循环过程;岩石破坏机理以剪切破碎和拉伸裂纹为主。同时,通过试验和数值模拟对比验证了破岩样本的形态,并分析了冲击速度、角度与粒子尺寸对破岩效应的影响规律。研究结果对于粒子浆液冲击钻井破岩理论的发展具有重要意义。
文摘设计满足鸟撞适航条款要求的飞机薄壁结构,必须进行典型薄壁结构抗鸟撞动响应试验及数值模拟研究。对某飞机机头上壁板薄壁结构进行了鸟撞试验,并采用光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM),基于商用显式有限元分析软件PAM-CRASH,建立了鸟撞上壁板薄壁结构数值计算模型。计算结果表明,上壁板结构损伤模式主要包括蒙皮撕裂和铆钉断裂,计算结果与试验结果良好的一致性验证了该数值计算模型及方法的合理性。在此基础上,建立了鸟撞典型薄壁结构数值计算模型,研究了鸟弹不同撞击角度和速度下典型薄壁结构蒙皮极限厚度值,结果表明,随着撞击速度的增大,蒙皮极限厚度的变化对撞击角度十分敏感。拟合了典型薄壁结构蒙皮极限厚度与鸟弹撞击角度和速度之间的数学关系,为飞机薄壁结构抗鸟撞设计提供技术支撑。