With sol-gel method,nanometer La-Ti composite oxides were prepared.By means of atomic force microscope,the surface pattern,particle size distribution and specific surface area were studied.The newly prepared nanocryst...With sol-gel method,nanometer La-Ti composite oxides were prepared.By means of atomic force microscope,the surface pattern,particle size distribution and specific surface area were studied.The newly prepared nanocrystals of La-Ti composite oxides were used as the catalysts to catalyze the dehydration of external compensated lactic acid to lactide.The lactide product was measured by polarimeter and micropolariscope.The results demonstrate that the ratio between D-lactide and L-lactide will not be equal to 1-1 if nanocrystals of La-Ti composite oxides are used as the catalysts,which implies,that nanocrystals of La-Ti composite oxides may be potential catalysts with a good selectivity.展开更多
基金Project(50174059)supported by the National Natural Science Foundation of ChinaProject(Y406469)supported by Natural Science Foundation of Zhejiang Province
文摘With sol-gel method,nanometer La-Ti composite oxides were prepared.By means of atomic force microscope,the surface pattern,particle size distribution and specific surface area were studied.The newly prepared nanocrystals of La-Ti composite oxides were used as the catalysts to catalyze the dehydration of external compensated lactic acid to lactide.The lactide product was measured by polarimeter and micropolariscope.The results demonstrate that the ratio between D-lactide and L-lactide will not be equal to 1-1 if nanocrystals of La-Ti composite oxides are used as the catalysts,which implies,that nanocrystals of La-Ti composite oxides may be potential catalysts with a good selectivity.