期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于DDTW聚类和SK TCN-GC BiGRU的分布式光伏短期功率预测
1
作者 段宏 郭成 +1 位作者 孙海东 王嵩岭 《智慧电力》 北大核心 2025年第4期71-80,共10页
针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性... 针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性内核网络(SKNet)和全局上下文模块(GC Block)优化TCN与BiGRU模型,分别增强提取多尺度特征和全局信息的能力。仿真结果验证了所提模型的优越性,尤其在气象条件数据波动较大的情况下,表现出较强的鲁棒性。 展开更多
关键词 短期功率预测 时间卷积神经网络 双向门控循环单元 导数动态时间弯曲聚类
在线阅读 下载PDF
基于CEEMD-LSTM光伏短期功率预测 被引量:8
2
作者 梁亚峰 马立红 +3 位作者 邱剑洪 冯在顺 何雷震 刘承锡 《科学技术与工程》 北大核心 2024年第13期5396-5405,共10页
为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)... 为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)相结合的光伏短期功率预测模型。首先,充分考虑影响光伏出力的太阳辐照度、相对湿度、大气压力和空气温度4种环境因素,通过CEEMD将气象因素特征曲线分解为多模态特征数据,准确捕捉其不同的时间尺度和频率特征,进而充分保留环境数据的不平稳特征。其次,在此基础上,利用LSTM网络对多模态特征数据进行时间序列建模,旨在保留时间序列的季节性和不平稳特征,为后续建模提供更准确的输入特征。最后,通过对分解后的信号开展训练,根据输入数据的变化自适应调整预测模型参数,迭代生成特定场景下的预测模型,从而灵活应对实时环境变化,得到相应功率预测结果。在海南一孤立海岛分布式光伏电站37 kW子阵的8个月气象和功率数据集进行验证,实验结果表明,所提方法在保留环境数据细节和局部特性上具有显著优势,在不同气象条件均具有良好的自适应性,有效提高了光伏短期功率预测精度。 展开更多
关键词 发电 完全经验模态分解 短期记忆神经网络 光伏短期功率预测 不平稳特征 多模态特征数据
在线阅读 下载PDF
基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测 被引量:24
3
作者 吴家葆 曾国辉 +2 位作者 张振华 黄勃 刘瑾 《可再生能源》 CAS CSCD 北大核心 2023年第8期1015-1022,共8页
为了提高电网运行的稳定性和改善电网的节能调度,针对目前单一模型处于不同天气状况时,预测精度难以达到最优的状况,文章提出了一种基于K-means分层聚类的TCN-GRU和长短期记忆网络(LSTM)动态组合光伏短期功率预测。利用K-means算法进行... 为了提高电网运行的稳定性和改善电网的节能调度,针对目前单一模型处于不同天气状况时,预测精度难以达到最优的状况,文章提出了一种基于K-means分层聚类的TCN-GRU和长短期记忆网络(LSTM)动态组合光伏短期功率预测。利用K-means算法进行二次聚类,将天气类型分为晴天(A_(1))、多云(A_(2))、阴天(A_(3))、雨天(A_(4));通过时间卷积网络(TCN)提取数据的时序特征,并结合门控循环单元(GRU)建立出融合提取时序特征模块的TCN-GRU结构;TCN-GRU与LSTM神经网络动态组合后,通过弹性网络(ElasticNet)回归选择最佳输出权重得到最终预测值;基于江苏某地区的光伏发电功率数据及对应的气象数据对文章所提出的方法进行验证。在4种天气状况下,通过与其他模型预测结果进行比较,文章提出的动态组合模型预测精度更高。 展开更多
关键词 K-MEANS 光伏短期功率预测 TCN-GRU LSTM ElasticNet 动态组合预测
在线阅读 下载PDF
组合辐射衰减因子预报与RBF神经网络的光伏短期功率预测方法 被引量:13
4
作者 梁志峰 董存 +2 位作者 吴骥 崔方 陈卫东 《电网技术》 EI CSCD 北大核心 2020年第11期4114-4120,共7页
为了提升多云、雾霾等复杂天气条件下的光伏功率预测精度,提出一种组合辐射衰减因子预报与RBF神经网络的光伏短期功率预测方法。利用WRF中尺度模式(V4.1版本)以及WRF-CHEM空气质量模式实现总云量、PM2.5浓度的模拟计算,结合光伏电站历... 为了提升多云、雾霾等复杂天气条件下的光伏功率预测精度,提出一种组合辐射衰减因子预报与RBF神经网络的光伏短期功率预测方法。利用WRF中尺度模式(V4.1版本)以及WRF-CHEM空气质量模式实现总云量、PM2.5浓度的模拟计算,结合光伏电站历史出力数据,基于RBF神经网络构建多气象要素与光伏出力的直接映射关系模型。针对华北某区域开展预报实验,结果表明,所提方法可以有效提升多云、雾霾天气条件下的光伏功率预报精度,从而为电网调度运行提供有力支撑。 展开更多
关键词 总云量 PM2.5 RBF神经网络 光伏短期功率预测
在线阅读 下载PDF
基于RIME-IAOA的混合模型短期光伏功率预测 被引量:1
5
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期功率预测
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
6
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
考虑季节特性与数据窗口的短期光伏功率预测组合模型 被引量:4
7
作者 张静 熊国江 《电力工程技术》 北大核心 2025年第1期183-192,共10页
光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的... 光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的气象因素,降低预测模型的输入特征维数。其次,对比不同季节下不同模型的光伏功率预测精度,选择光伏功率预测误差最小且相关性最低的2个模型构建组合模型,即门控循环单元(gated recurrent unit,GRU)模型和极限梯度提升(extreme gradient boosting,XGboost)模型。然后,分析历史气象数据中不同输入窗口对GRU-XGboost模型预测精度的影响,确定最优数据窗口。最后,在此基础上分别采用GRU和XGboost对光伏功率进行预测,将2个预测结果加权组合得到最终预测结果。结果表明,与其他模型相比,所提模型具有更强的适应性和更高的预测精度。 展开更多
关键词 短期功率预测 季节特性 数据窗口 门控循环单元(GRU) 极限梯度提升(XGboost) 组合模型
在线阅读 下载PDF
基于优化TCN组合模型的短期光伏功率预测
8
作者 刘俊宏 富斯源 王亚君 《科学技术与工程》 北大核心 2025年第15期6378-6388,共11页
为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal conv... 为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal convolutional network,TCN)和多头自注意力机制(malti-head self-attention,MHSA)于一体。首先,采用斯皮尔曼相关系数法提取对光伏功率影响较大的主要特征,并输入至TCN预测模型;然后,将提出的多策略改进灰狼优化算法LGGWO应用于TCN内部进行超参数优化,改善模型预测性能;最后,将预测值输入至多头自注意力模型中进一步提升预测精度。实验采用澳大利亚原始光伏数据进行验证,通过与卷积神经网络(convolutional neural networks,CNN)、长短期记忆神经网络(long short-term memory,LSTM)等六组模型进行对比,所提模型在测试数据集上的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别降低了2.03%~82.0%和10.5%~80.1%,结果表明:所提方法具有较高的预测精度和良好的稳定性。 展开更多
关键词 发电 功率短期预测 改进灰狼优化算法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测 被引量:12
9
作者 董俊 刘瑞 +2 位作者 束洪春 罗琨 刘壮 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3883-3893,I0006-I0008,共14页
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测... 精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。 展开更多
关键词 深度学习 自注意力机制 多头注意力 BIRCH聚类 短期功率预测 特征融合
在线阅读 下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:6
10
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
在线阅读 下载PDF
基于数据集蒸馏的光伏发电功率超短期预测 被引量:9
11
作者 郑珂 王丽婕 +1 位作者 郝颖 王勃 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5196-5207,I0015,共13页
云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预... 云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预测模型。首先,基于待测场站上方的历史云图,采用Farneback光流法预测出云图;然后,根据卫星云分类标签数据建立各类云的样本库,利用数据集蒸馏算法训练样本库得到云类判别图,将预测云图与云类判别图匹配计算,获得云类聚合匹配特征;最后,利用上述特征、云量特征以及数值天气预报数据建立长短期记忆网络模型,对光伏发电功率进行超短期预测。利用某光伏电站数据进行验证,结果显示,该文所提模型能准确描述云层的各项特征,有效提升光伏功率预测精度。 展开更多
关键词 数据集蒸馏 卫星云图 云分类 流法 短期功率预测
在线阅读 下载PDF
基于QMD-HBi GRU的短期光伏功率预测方法 被引量:11
12
作者 吉兴全 赵国航 +3 位作者 叶平峰 孟祥剑 杨明 张玉敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3850-3859,I0002-I0005,共14页
为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率... 为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率数据的不确定性,基于自适应噪声完备集合经验模态分解、样本熵和变分模态分解对光伏功率数据进行处理,得到一系列较为平稳的本征模函数分量;其次,构建HBi GRU模型以充分挖掘各分量与光伏功率影响因素之间的特征关系,得到各分量预测结果;最后,将各分量预测结果叠加得到短期光伏功率预测结果。以澳大利亚某地光伏电站数据进行测试,仿真结果表明:所提集成预测模型能够有效提高短期光伏功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别降低了3.21%和5.04%,决定系数提高了22.7%。 展开更多
关键词 短期功率预测 混合双向门控循环单元 自适应噪声完备集合经验模态分解 变分模态分解 二次模态分解 深度学习
在线阅读 下载PDF
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测 被引量:8
13
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 功率短期预测 灰色关联分析 改进鲸鱼优化算法 短期记忆神经网络
在线阅读 下载PDF
基于集成机器学习模型的短期光伏出力区间预测 被引量:6
14
作者 陈习勋 吴凯彤 +1 位作者 何杰 彭显刚 《智慧电力》 北大核心 2024年第2期87-93,107,共8页
为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气... 为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气象数据进行最优特征的提取;然后,在集成多个机器学习模型的基础上,收集训练过程中的预测误差,通过最大似然估计获取预测误差的概率分布,得到预测区间的上下限;最后,结合集成学习模型预测得到光伏出力曲线,进而得到最终的日前光伏出力预测区间。最后通过算例验证了所提模型的可靠性与优越性。 展开更多
关键词 短期功率预测 特征选择 机器学习 区间预测
在线阅读 下载PDF
面向光伏功率预测的残差深度学习模型 被引量:1
15
作者 干逸飞 吕品 郑树泉 《计算机应用与软件》 北大核心 2024年第11期101-107,共7页
为保证光伏功率预测模型在气象突变时具有较高的精度,提出用残差量化气象突变,并将其构造为一种新特征。应用最大信息系数(MIC)剔除无关的气象特征后,引入XGBoost模型得到残差序列。利用残差的自相关性,将上一时刻的残差作为当前时刻的... 为保证光伏功率预测模型在气象突变时具有较高的精度,提出用残差量化气象突变,并将其构造为一种新特征。应用最大信息系数(MIC)剔除无关的气象特征后,引入XGBoost模型得到残差序列。利用残差的自相关性,将上一时刻的残差作为当前时刻的新特征,构建面向光伏功率预测的残差深度学习模型。实验结果表明,在气象突变下,该模型能取得更高的精确度。 展开更多
关键词 短期功率预测 XGBoost LSTM 预测修正
在线阅读 下载PDF
基于小波分析和集成学习的光伏输出功率短期预测 被引量:11
16
作者 孙永辉 范磊 +3 位作者 卫志农 李慧杰 Kwok W Cheung 孙国强 《电力系统及其自动化学报》 CSCD 北大核心 2016年第4期6-11,30,共7页
针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋... 针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋势项采用SVM算法,随机项采用BP算法进行预测处理;再考虑到随机项的非平稳性和BP算法的固有缺点,为提高预测精度,将集成学习引入随机项的预测模型。大量测试结果表明,基于小波分析和集成学习的短期预测模型的预测精度优于现有几种模型。 展开更多
关键词 小波分析 集成学习 BP神经网络 支持向量机 输出功率短期预测
在线阅读 下载PDF
基于小波包与LSSVM的短期光伏输出功率预测研究 被引量:28
17
作者 杨茂 杨宇 《可再生能源》 CAS 北大核心 2019年第11期1595-1602,共8页
由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光... 由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光伏电站输出功率预测方法。首先,利用小波包将原始光伏电站输出功率,以及太阳辐照度、环境温度、环境湿度等气象因素进行分解,得到基频信号和多层高频信号;然后,利用最小二乘支持向量机所具有的处理小样本数据和解决非线性函数的能力,将得到的基频信号和多层高频信号作为最小二乘支持向量机的输入变量;最后,将不同尺度的输出结果进行叠加、合成,得到原始光伏电站输出功率的预测值。仿真结果表明,与传统的最小二乘支持向量机预测法、BP神经网络预测法,以及EMD与LSSVM相结合的预测方法相比,文章预测方法的预测精度较高,可以有效地预测光伏电站输出功率。 展开更多
关键词 气象因素 小波包分解 最小二乘支持向量机 功率短期预测
在线阅读 下载PDF
一种适用于单/多光伏电站的迁移超短期光伏预测建模框架 被引量:3
18
作者 任密蜂 王家辉 +2 位作者 叶泽甫 朱竹军 阎高伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期359-367,共9页
针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚... 针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚类方法,同时为避免维度过高问题并强化天气类型与光伏发电功率之间的映射关系,提出类内外特征加权结构保持降维算法;其次,通过采用测地线流式核积分完成数据分布对齐,减小样本分布差异对单/多电站模型鲁棒性的影响;最后,采用梯度增强决策树建立光伏功率预测模型,实现光伏功率预测精度的提升。采用公开数据集PVOD验证了所提算法的有效性。 展开更多
关键词 电站 预测 迁移学习 功率短期预测 结构保持 测地线流式核
在线阅读 下载PDF
基于天气分型的短期光伏功率组合预测方法 被引量:69
19
作者 叶林 裴铭 +2 位作者 路朋 赵金龙 何博宇 《电力系统自动化》 EI CSCD 北大核心 2021年第1期44-54,共11页
由于光伏功率波动特征与天气类型紧密相关,且光伏功率短期预测存在功率波动过程预测精度低、气象因素与功率波动过程相关性弱的问题,文中提出了一种基于天气分型的短期光伏功率组合预测方法。首先,基于气象因素与光伏功率波动特征的关联... 由于光伏功率波动特征与天气类型紧密相关,且光伏功率短期预测存在功率波动过程预测精度低、气象因素与功率波动过程相关性弱的问题,文中提出了一种基于天气分型的短期光伏功率组合预测方法。首先,基于气象因素与光伏功率波动特征的关联性,将天气过程划分为5种类型,并基于变分模态分解算法将光伏功率分解为类晴空过程和波动过程。然后,利用Granger因果关系算法筛选出与各天气类型下光伏功率波动过程密切相关的关键气象因子。最后,建立基于天气分型的短期光伏功率组合预测模型。模型充分考虑了深度学习算法的特异性,对光伏功率类晴空过程与各天气类型下的光伏功率波动过程进行分类预测。仿真结果表明,文中所提出的短期光伏功率预测方法能够显著提升短期光伏功率预测的精度。 展开更多
关键词 短期功率预测 变分模态分解 GRANGER因果关系分析 功率波动过程 功率类晴空过程 组合预测
在线阅读 下载PDF
基于马氏距离相似度量的光伏功率超短期预测方法的研究 被引量:14
20
作者 杨茂 冯帆 《可再生能源》 CAS CSCD 北大核心 2021年第2期175-181,共7页
提高光伏功率超短期预测精度可有效减小光伏发电并网对电力系统稳定性的影响。文章提出了一种基于马氏距离相似度量的光伏功率超短期预测方法。首先,文章采用Elkan K-means聚类分析方法对天气类型进行划分,并通过计算各气象因素与光伏... 提高光伏功率超短期预测精度可有效减小光伏发电并网对电力系统稳定性的影响。文章提出了一种基于马氏距离相似度量的光伏功率超短期预测方法。首先,文章采用Elkan K-means聚类分析方法对天气类型进行划分,并通过计算各气象因素与光伏电站输出功率间的灰色关联度,选出不同天气类型下影响光伏功率的主要气象因素;然后,根据样本日和预测日间主要气象因素的马氏距离选择若干个相似日,并将相似日的光伏功率作为预测模型的训练集,对预测日的光伏功率进行超短期预测。模拟结果表明:基于马氏距离相似度量得到的相似日光伏功率和预测日的相似度较高;将基于马氏距离相似度量得到的相似日光伏功率作为预测模型的训练集,可以提高光伏功率超短期预测精度,为光伏功率预测领域提供了有效的方法。 展开更多
关键词 功率短期预测 聚类分析 灰色关联度 马氏距离 相似日
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部