期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测 被引量:5
1
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 光伏功率短期预测 灰色关联分析 改进鲸鱼优化算法 短期记忆神经网络
在线阅读 下载PDF
基于FCM和CG-DBN的光伏功率短期预测 被引量:9
2
作者 李正明 高赵亮 梁彩霞 《现代电力》 北大核心 2019年第5期62-67,共6页
针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚... 针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚类,随后根据类别进行CGDBN预测模型的建模,最后利用该模型进行光伏输出功率的短期预测。本文将方案应用于浙江龙游发电站,并将预测结果与传统预测模型进行了比较。最终得出,FCM和CG-DBN组合预测模型在光伏功率短期预测中的性能优于其他模型。 展开更多
关键词 相似日聚类 深度信念网络 光伏功率短期预测 组合预测模型 共轭梯度法
在线阅读 下载PDF
基于VMD-GWO-ELMAN的光伏功率短期预测方法 被引量:28
3
作者 张娜 任强 +2 位作者 刘广忱 郭力萍 李静宇 《中国电力》 CSCD 北大核心 2022年第5期57-65,共9页
以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输... 以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输出功率短期预测模型。首先,使用Kmeans算法对原始数据按天气类型进行聚类;然后,使用VMD对每一类型天气光伏输出功率数据进行分解,分别将各分解子序列输入经GWO优化的Elman神经网络进行光伏输出功率预测;最后,将各预测结果进行叠加。实例证明:该模型的预测精度有所提升。 展开更多
关键词 K-MEANS聚类 变分模态分解 灰狼优化算法 ELMAN神经网络 短期功率预测
在线阅读 下载PDF
基于改进麻雀搜索算法的光伏功率短期预测 被引量:14
4
作者 李争 罗晓瑞 +3 位作者 张杰 曹欣 杜深慧 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期284-289,共6页
为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维... 为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维稳和降维处理;并建立改进麻雀搜索算法的BP神经网络预测模型;最后,进行实例验证。结果表明,该预测模型在敛散精度方面有所提升。 展开更多
关键词 经验模态分解 主成分分析 改进麻雀搜索算法 输出功率短期预测
在线阅读 下载PDF
基于优化TCN组合模型的短期光伏功率预测
5
作者 刘俊宏 富斯源 王亚君 《科学技术与工程》 北大核心 2025年第15期6378-6388,共11页
为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal conv... 为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化时域卷积网络超参数的光伏功率预测组合模型(LGGWO-TCN-MHSA)。该模型集改进灰狼优化算法(levy gold gray wolf optimization,LGGWO)、时域卷积网络(temporal convolutional network,TCN)和多头自注意力机制(malti-head self-attention,MHSA)于一体。首先,采用斯皮尔曼相关系数法提取对光伏功率影响较大的主要特征,并输入至TCN预测模型;然后,将提出的多策略改进灰狼优化算法LGGWO应用于TCN内部进行超参数优化,改善模型预测性能;最后,将预测值输入至多头自注意力模型中进一步提升预测精度。实验采用澳大利亚原始光伏数据进行验证,通过与卷积神经网络(convolutional neural networks,CNN)、长短期记忆神经网络(long short-term memory,LSTM)等六组模型进行对比,所提模型在测试数据集上的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别降低了2.03%~82.0%和10.5%~80.1%,结果表明:所提方法具有较高的预测精度和良好的稳定性。 展开更多
关键词 发电 光伏功率短期预测 改进灰狼优化算法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
6
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于RIME-IAOA的混合模型短期光伏功率预测
7
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期功率预测
在线阅读 下载PDF
考虑季节特性与数据窗口的短期光伏功率预测组合模型 被引量:2
8
作者 张静 熊国江 《电力工程技术》 北大核心 2025年第1期183-192,共10页
光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的... 光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的气象因素,降低预测模型的输入特征维数。其次,对比不同季节下不同模型的光伏功率预测精度,选择光伏功率预测误差最小且相关性最低的2个模型构建组合模型,即门控循环单元(gated recurrent unit,GRU)模型和极限梯度提升(extreme gradient boosting,XGboost)模型。然后,分析历史气象数据中不同输入窗口对GRU-XGboost模型预测精度的影响,确定最优数据窗口。最后,在此基础上分别采用GRU和XGboost对光伏功率进行预测,将2个预测结果加权组合得到最终预测结果。结果表明,与其他模型相比,所提模型具有更强的适应性和更高的预测精度。 展开更多
关键词 短期功率预测 季节特性 数据窗口 门控循环单元(GRU) 极限梯度提升(XGboost) 组合模型
在线阅读 下载PDF
基于DDTW聚类和SK TCN-GC BiGRU的分布式光伏短期功率预测
9
作者 段宏 郭成 +1 位作者 孙海东 王嵩岭 《智慧电力》 北大核心 2025年第4期71-80,共10页
针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性... 针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性内核网络(SKNet)和全局上下文模块(GC Block)优化TCN与BiGRU模型,分别增强提取多尺度特征和全局信息的能力。仿真结果验证了所提模型的优越性,尤其在气象条件数据波动较大的情况下,表现出较强的鲁棒性。 展开更多
关键词 短期功率预测 时间卷积神经网络 双向门控循环单元 导数动态时间弯曲聚类
在线阅读 下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:6
10
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
在线阅读 下载PDF
基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测 被引量:9
11
作者 董俊 刘瑞 +2 位作者 束洪春 罗琨 刘壮 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3883-3893,I0006-I0008,共14页
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测... 精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。 展开更多
关键词 深度学习 自注意力机制 多头注意力 BIRCH聚类 短期功率预测 特征融合
在线阅读 下载PDF
基于数据集蒸馏的光伏发电功率超短期预测 被引量:7
12
作者 郑珂 王丽婕 +1 位作者 郝颖 王勃 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5196-5207,I0015,共13页
云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预... 云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预测模型。首先,基于待测场站上方的历史云图,采用Farneback光流法预测出云图;然后,根据卫星云分类标签数据建立各类云的样本库,利用数据集蒸馏算法训练样本库得到云类判别图,将预测云图与云类判别图匹配计算,获得云类聚合匹配特征;最后,利用上述特征、云量特征以及数值天气预报数据建立长短期记忆网络模型,对光伏发电功率进行超短期预测。利用某光伏电站数据进行验证,结果显示,该文所提模型能准确描述云层的各项特征,有效提升光伏功率预测精度。 展开更多
关键词 数据集蒸馏 卫星云图 云分类 流法 短期功率预测
在线阅读 下载PDF
基于QMD-HBi GRU的短期光伏功率预测方法 被引量:9
13
作者 吉兴全 赵国航 +3 位作者 叶平峰 孟祥剑 杨明 张玉敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3850-3859,I0002-I0005,共14页
为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率... 为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率数据的不确定性,基于自适应噪声完备集合经验模态分解、样本熵和变分模态分解对光伏功率数据进行处理,得到一系列较为平稳的本征模函数分量;其次,构建HBi GRU模型以充分挖掘各分量与光伏功率影响因素之间的特征关系,得到各分量预测结果;最后,将各分量预测结果叠加得到短期光伏功率预测结果。以澳大利亚某地光伏电站数据进行测试,仿真结果表明:所提集成预测模型能够有效提高短期光伏功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别降低了3.21%和5.04%,决定系数提高了22.7%。 展开更多
关键词 短期功率预测 混合双向门控循环单元 自适应噪声完备集合经验模态分解 变分模态分解 二次模态分解 深度学习
在线阅读 下载PDF
基于CEEMD-LSTM光伏短期功率预测 被引量:6
14
作者 梁亚峰 马立红 +3 位作者 邱剑洪 冯在顺 何雷震 刘承锡 《科学技术与工程》 北大核心 2024年第13期5396-5405,共10页
为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)... 为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)相结合的光伏短期功率预测模型。首先,充分考虑影响光伏出力的太阳辐照度、相对湿度、大气压力和空气温度4种环境因素,通过CEEMD将气象因素特征曲线分解为多模态特征数据,准确捕捉其不同的时间尺度和频率特征,进而充分保留环境数据的不平稳特征。其次,在此基础上,利用LSTM网络对多模态特征数据进行时间序列建模,旨在保留时间序列的季节性和不平稳特征,为后续建模提供更准确的输入特征。最后,通过对分解后的信号开展训练,根据输入数据的变化自适应调整预测模型参数,迭代生成特定场景下的预测模型,从而灵活应对实时环境变化,得到相应功率预测结果。在海南一孤立海岛分布式光伏电站37 kW子阵的8个月气象和功率数据集进行验证,实验结果表明,所提方法在保留环境数据细节和局部特性上具有显著优势,在不同气象条件均具有良好的自适应性,有效提高了光伏短期功率预测精度。 展开更多
关键词 发电 完全经验模态分解 短期记忆神经网络 短期功率预测 不平稳特征 多模态特征数据
在线阅读 下载PDF
基于小波包与LSSVM的短期光伏输出功率预测研究 被引量:28
15
作者 杨茂 杨宇 《可再生能源》 CAS 北大核心 2019年第11期1595-1602,共8页
由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光... 由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光伏电站输出功率预测方法。首先,利用小波包将原始光伏电站输出功率,以及太阳辐照度、环境温度、环境湿度等气象因素进行分解,得到基频信号和多层高频信号;然后,利用最小二乘支持向量机所具有的处理小样本数据和解决非线性函数的能力,将得到的基频信号和多层高频信号作为最小二乘支持向量机的输入变量;最后,将不同尺度的输出结果进行叠加、合成,得到原始光伏电站输出功率的预测值。仿真结果表明,与传统的最小二乘支持向量机预测法、BP神经网络预测法,以及EMD与LSSVM相结合的预测方法相比,文章预测方法的预测精度较高,可以有效地预测光伏电站输出功率。 展开更多
关键词 气象因素 小波包分解 最小二乘支持向量机 光伏功率短期预测
在线阅读 下载PDF
基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测 被引量:42
16
作者 时珉 许可 +2 位作者 王珏 尹瑞 张沛 《电工技术学报》 EI CSCD 北大核心 2021年第11期2298-2305,共8页
准确预测光伏发电功率对电网调度具有十分重要的意义。该文提出一种基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测方法。首先,利用灰色关联分析对某地区多光伏电站进行空间相关性分析,选取与待预测光伏电站高度相关的周边电站;然... 准确预测光伏发电功率对电网调度具有十分重要的意义。该文提出一种基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测方法。首先,利用灰色关联分析对某地区多光伏电站进行空间相关性分析,选取与待预测光伏电站高度相关的周边电站;然后,基于GeoMAN模型动态提取待预测光伏电站的时空特征和外部气象因素,GeoMAN模型采用编解码结构,利用编码器动态提取待预测光伏电站的站内特征和与周边相关电站的站间空间特征,利用解码器提取输入变量的时间特性,并融合晴空指数和数值天气预报动态输出光伏发电预测功率;最后,采用实际光伏电站进行案例分析,结果表明该文所提出的预测方法与传统LSTM模型相比,实现了更高精度的光伏发电功率短期预测。 展开更多
关键词 光伏功率短期预测 灰色关联分析 GeoMAN模型 时空相关性 注意力机制
在线阅读 下载PDF
基于多特征分析和提取的短期光伏功率预测 被引量:18
17
作者 闫钇汛 王丽婕 +3 位作者 郭洪武 王勃 车建峰 郝颖 《高电压技术》 EI CAS CSCD 北大核心 2022年第9期3734-3743,共10页
在对短期光伏发电功率预测时,多维数值天气预报(numerical weather prediction,NWP)数据中存在大量冗余和不相关特征,不仅影响预测的准确度,也会增加模型的复杂度,为此提出一种基于多特征分析和提取的短期光伏功率预测模型。通过K-mean... 在对短期光伏发电功率预测时,多维数值天气预报(numerical weather prediction,NWP)数据中存在大量冗余和不相关特征,不仅影响预测的准确度,也会增加模型的复杂度,为此提出一种基于多特征分析和提取的短期光伏功率预测模型。通过K-means++聚类选取与预测日具有相似天气类型的历史数据作为训练样本,利用一阶差分具有滤波的特性对不稳定的特征数据进行处理,同时构造新特征;引入因子分析法,考虑特征与输出功率之间的相关性并提取有效特征,由远少于特征数的公共因子作为预测模型的输入数据;最后采用XGBoost对光伏功率进行预测。对某光伏电站仿真结果表明,提出的预测模型在晴天、晴转多云和阴雨天下的均方根误差分别为5.33%、6.13%和9.5%,在非晴天模式下的预测精度较传统方法可提升3%~10%。研究结果可为复杂天气下的光伏功率预测提供参考。 展开更多
关键词 光伏功率短期预测 K-means++聚类 特征差分 因子分析 XGBoost
在线阅读 下载PDF
基于集成机器学习模型的短期光伏出力区间预测 被引量:4
18
作者 陈习勋 吴凯彤 +1 位作者 何杰 彭显刚 《智慧电力》 北大核心 2024年第2期87-93,107,共8页
为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气... 为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气象数据进行最优特征的提取;然后,在集成多个机器学习模型的基础上,收集训练过程中的预测误差,通过最大似然估计获取预测误差的概率分布,得到预测区间的上下限;最后,结合集成学习模型预测得到光伏出力曲线,进而得到最终的日前光伏出力预测区间。最后通过算例验证了所提模型的可靠性与优越性。 展开更多
关键词 短期功率预测 特征选择 机器学习 区间预测
在线阅读 下载PDF
基于无爬坡事件定义标准晴空集的短期光伏功率预测 被引量:3
19
作者 郭洪武 车建峰 +1 位作者 闫钇汛 王丽婕 《中国电力》 CSCD 北大核心 2023年第9期187-195,共9页
光伏功率的输出受季节、气象条件及其他因素的影响具有随机性和不确定性,恶劣天气下功率输出具有较强的波动性也加大了预测的难度。提出了一种基于无爬坡事件定义标准晴空集的短期光伏功率预测模型。通过爬坡定义提取一天内均为无爬坡... 光伏功率的输出受季节、气象条件及其他因素的影响具有随机性和不确定性,恶劣天气下功率输出具有较强的波动性也加大了预测的难度。提出了一种基于无爬坡事件定义标准晴空集的短期光伏功率预测模型。通过爬坡定义提取一天内均为无爬坡事件的样本点,将其定义为一个标准晴空集,并与历史实际功率做差,得到的差值作为输出目标变量,以数值天气预报作为输入变量,采用长短期记忆模型对差值进行建模预测,最后将标准晴空集与该预测差值做差,间接得到预测的光伏输出功率值。通过对某光伏电站进行仿真,并进行算例对比,所提模型的短期光伏功率预测精度提高了2%~4%,在恶劣天气下,该方法可以将平均绝对误差和均方根误差降低3%左右,验证了所提模型的性能和有效性。 展开更多
关键词 光伏功率短期预测 非爬坡样本提取 标准晴空集 短期记忆模型
在线阅读 下载PDF
基于小波分析和集成学习的光伏输出功率短期预测 被引量:11
20
作者 孙永辉 范磊 +3 位作者 卫志农 李慧杰 Kwok W Cheung 孙国强 《电力系统及其自动化学报》 CSCD 北大核心 2016年第4期6-11,30,共7页
针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋... 针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋势项采用SVM算法,随机项采用BP算法进行预测处理;再考虑到随机项的非平稳性和BP算法的固有缺点,为提高预测精度,将集成学习引入随机项的预测模型。大量测试结果表明,基于小波分析和集成学习的短期预测模型的预测精度优于现有几种模型。 展开更多
关键词 小波分析 集成学习 BP神经网络 支持向量机 输出功率短期预测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部