期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
考虑实际退役电池常用SOC范围的SOH预测
1
作者 杜燕 陶骁 +3 位作者 苏建徽 李金中 谢毓广 朱轲 《太阳能学报》 北大核心 2025年第2期99-105,共7页
针对退役电池老化程度较高,在动力电池上采用的健康特征无法满足退役电池实际工作时的荷电状态(SOC)的范围的问题,提出在退役电池实际使用时SOC的主要分布范围内获取电池充电数据,通过获取的数据预测SOH,提升算法运用的实用性。在此基础... 针对退役电池老化程度较高,在动力电池上采用的健康特征无法满足退役电池实际工作时的荷电状态(SOC)的范围的问题,提出在退役电池实际使用时SOC的主要分布范围内获取电池充电数据,通过获取的数据预测SOH,提升算法运用的实用性。在此基础上,针对传统SOH估计算法提取能反映电池老化特性的特征较困难,且无法完全利用数据的问题,提出利用一维深度卷积神经网络(CNN)提取电池特征,再将特征输入到长短期神经网络(LSTM)中预测SOH。利用美国国家航空航天局(NASA)锂离子电池随机数据集对算法进行验证,该方法能采取较少的电池片段来实现准确的SOH估算,且相较于传统的SOH算法,更能贴合退役电池实际使用需求。 展开更多
关键词 退役电池 电池健康状态 电池荷电状态 卷积神经网络 长短期神经网络 充电数据片段
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部