储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构...储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性;以储能电池端电压作为均衡目标,提出基于双层极值法的锂离子电池快速均衡方法;搭建电池均衡实验教学平台,设计充放电及静置均衡实验,通过仿真分析和实验数据验证所提方法的有效性。该教学实验将理论知识、实验操作及数据分析相结合,有助于提升电气工程专业相关课程实验的质量和效果。展开更多
提出了一种基于Buck-Boost电路的新型均衡电路,实现了锂离子串联电池组充放电均衡。根据均衡能量流向,采取两种不同的均衡策略:电池组放电时,均衡能量由电池组向组内荷电状态(state of charge,SOC)较低的单体电池转移;电池组充电时,均...提出了一种基于Buck-Boost电路的新型均衡电路,实现了锂离子串联电池组充放电均衡。根据均衡能量流向,采取两种不同的均衡策略:电池组放电时,均衡能量由电池组向组内荷电状态(state of charge,SOC)较低的单体电池转移;电池组充电时,均衡能量由电池组中SOC较高的单体电池向电池组转移。以单体电池开路电压在线估计为基础,运用开路电压法估算SOC,选取SOC值在一定阈值范围之外的单体电池作为均衡对象,对6节串联的磷酸铁锂电池进行了充放电均衡实验。实验结果表明,该方案可以有效减小单体电池间的不一致性,提升电池组的整体性,同时提高了电池组充放电容量。展开更多
文摘储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性;以储能电池端电压作为均衡目标,提出基于双层极值法的锂离子电池快速均衡方法;搭建电池均衡实验教学平台,设计充放电及静置均衡实验,通过仿真分析和实验数据验证所提方法的有效性。该教学实验将理论知识、实验操作及数据分析相结合,有助于提升电气工程专业相关课程实验的质量和效果。
文摘提出了一种基于Buck-Boost电路的新型均衡电路,实现了锂离子串联电池组充放电均衡。根据均衡能量流向,采取两种不同的均衡策略:电池组放电时,均衡能量由电池组向组内荷电状态(state of charge,SOC)较低的单体电池转移;电池组充电时,均衡能量由电池组中SOC较高的单体电池向电池组转移。以单体电池开路电压在线估计为基础,运用开路电压法估算SOC,选取SOC值在一定阈值范围之外的单体电池作为均衡对象,对6节串联的磷酸铁锂电池进行了充放电均衡实验。实验结果表明,该方案可以有效减小单体电池间的不一致性,提升电池组的整体性,同时提高了电池组充放电容量。