期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于边缘增强的交叉注意力医学影像分割方法
1
作者 陆秋 张云磊 +1 位作者 邵铧泽 黄琳 《桂林理工大学学报》 北大核心 2025年第1期111-119,共9页
为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更... 为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更好地提取边缘信息;第2阶段的不确定性概率边缘区域增强模块用于上采样阶段,以更好地保留边缘信息和降低噪声造成的误差;跳跃连接阶段使用一种二维分轴交叉注意力机制,以更好地捕获全局依赖关系。在腹部多器官数据集上进行的实验结果表明:该网络模型较基于UNet改进的3种主流网络模型在Dice和IoU评价指标中都有了一定的提升;边缘增强能有效提取医学影像的边缘信息,得到更加清晰的边缘曲线,有利于进一步提升分割性能。 展开更多
关键词 医学影像分割 交叉注意力机制 不确定性 像素点概率机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部