期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多层次分辨率递进生成对抗网络的文本生成图像方法
被引量:
5
1
作者
许一宁
何小海
+1 位作者
张津
卿粼波
《计算机应用》
CSCD
北大核心
2020年第12期3612-3617,共6页
针对文本生成图像任务存在生成图像有目标结构不合理、图像纹理不清晰等问题,在注意力生成对抗网络(AttnGAN)的基础上提出了多层次分辨率递进生成对抗网络(MPRGAN)模型。首先,在低分辨率层采用语义分离-融合生成模块,将文本特征在自注...
针对文本生成图像任务存在生成图像有目标结构不合理、图像纹理不清晰等问题,在注意力生成对抗网络(AttnGAN)的基础上提出了多层次分辨率递进生成对抗网络(MPRGAN)模型。首先,在低分辨率层采用语义分离-融合生成模块,将文本特征在自注意力机制引导下分离为3个特征向量,并用这些特征向量分别生成特征图谱;然后,将特征图谱融合为低分辨率图谱,并采用mask图像作为语义约束以提高低分辨率生成器的稳定性;最后,在高分辨率层采用分辨率递进残差结构,同时结合词注意力机制和像素混洗来进一步改善生成图像的质量。实验结果表明,在数据集CUB-200-2011和Oxford-102上,所提模型的IS分别达到了4.70和3.53,与AttnGAN相比分别提高了7.80%和3.82%。MPRGAN模型能够在一定程度上解决结构生成不稳定的问题,同时其生成的图像也更接近真实图像。
展开更多
关键词
文本生成图像
生成对抗网络
自注意力机制
残差结构
像素混洗
在线阅读
下载PDF
职称材料
题名
基于多层次分辨率递进生成对抗网络的文本生成图像方法
被引量:
5
1
作者
许一宁
何小海
张津
卿粼波
机构
四川大学电子信息学院
出处
《计算机应用》
CSCD
北大核心
2020年第12期3612-3617,共6页
基金
国家自然科学基金资助项目(61871278)
四川省科技计划项目(2018HH0143)
+1 种基金
四川省教育厅项目(18ZB0355)
成都市产业集群协同创新项目(2016-XT00-00015-GX)。
文摘
针对文本生成图像任务存在生成图像有目标结构不合理、图像纹理不清晰等问题,在注意力生成对抗网络(AttnGAN)的基础上提出了多层次分辨率递进生成对抗网络(MPRGAN)模型。首先,在低分辨率层采用语义分离-融合生成模块,将文本特征在自注意力机制引导下分离为3个特征向量,并用这些特征向量分别生成特征图谱;然后,将特征图谱融合为低分辨率图谱,并采用mask图像作为语义约束以提高低分辨率生成器的稳定性;最后,在高分辨率层采用分辨率递进残差结构,同时结合词注意力机制和像素混洗来进一步改善生成图像的质量。实验结果表明,在数据集CUB-200-2011和Oxford-102上,所提模型的IS分别达到了4.70和3.53,与AttnGAN相比分别提高了7.80%和3.82%。MPRGAN模型能够在一定程度上解决结构生成不稳定的问题,同时其生成的图像也更接近真实图像。
关键词
文本生成图像
生成对抗网络
自注意力机制
残差结构
像素混洗
Keywords
text-to-image synthesis
Generative Adversarial Network(GAN)
self-attention mechanism
residual structure
pixel shuffle
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多层次分辨率递进生成对抗网络的文本生成图像方法
许一宁
何小海
张津
卿粼波
《计算机应用》
CSCD
北大核心
2020
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部