The catalytic partial oxidation of methane(CPOM) to syngas was studied on a rhodium coated foam monolith catalyst.The influences of reactor temperature,space velocity and methane/oxygen ratio were investigated and dis...The catalytic partial oxidation of methane(CPOM) to syngas was studied on a rhodium coated foam monolith catalyst.The influences of reactor temperature,space velocity and methane/oxygen ratio were investigated and discussed.The reaction could be maintained auto-thermally after ignition.Under the conditions of high space velocity(8.0×105 h-1) and methane/oxygen ratio of 1.8,the methane conversion,hydrogen selectivity and carbon monoxide selectivity exceeded 90%,90% and 95%,respectively.Heat supply to the reactor increased methane conversion and selectivity to hydrogen and carbon monoxide.展开更多
利用F luent中标准κ-ε模型和多孔介质模型对焦炉气催化部分氧化转化炉进行模拟计算。整个反应床层分为氧化反应区和转化区,氧化反应区主要发生燃烧反应;转化区则装填催化剂,发生甲烷重整反应。通过模拟计算给出了转化炉内温度分布、...利用F luent中标准κ-ε模型和多孔介质模型对焦炉气催化部分氧化转化炉进行模拟计算。整个反应床层分为氧化反应区和转化区,氧化反应区主要发生燃烧反应;转化区则装填催化剂,发生甲烷重整反应。通过模拟计算给出了转化炉内温度分布、压力分布、组分摩尔分数分布。转化炉出口的温度与气体摩尔分数与Aspen P lus软件模拟结果相吻合。表明CFD模拟结果是准确的,可用于焦炉气催化部分氧化转化炉的工艺和结构设计中。展开更多
文摘The catalytic partial oxidation of methane(CPOM) to syngas was studied on a rhodium coated foam monolith catalyst.The influences of reactor temperature,space velocity and methane/oxygen ratio were investigated and discussed.The reaction could be maintained auto-thermally after ignition.Under the conditions of high space velocity(8.0×105 h-1) and methane/oxygen ratio of 1.8,the methane conversion,hydrogen selectivity and carbon monoxide selectivity exceeded 90%,90% and 95%,respectively.Heat supply to the reactor increased methane conversion and selectivity to hydrogen and carbon monoxide.
文摘利用F luent中标准κ-ε模型和多孔介质模型对焦炉气催化部分氧化转化炉进行模拟计算。整个反应床层分为氧化反应区和转化区,氧化反应区主要发生燃烧反应;转化区则装填催化剂,发生甲烷重整反应。通过模拟计算给出了转化炉内温度分布、压力分布、组分摩尔分数分布。转化炉出口的温度与气体摩尔分数与Aspen P lus软件模拟结果相吻合。表明CFD模拟结果是准确的,可用于焦炉气催化部分氧化转化炉的工艺和结构设计中。