期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
催化反应制备碳化硅纳米粉体的密度泛函理论计算及实验研究 被引量:3
1
作者 王军凯 韩磊 +3 位作者 黄亮 张海军 李俊怡 李赛赛 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2017年第9期1602-1610,共9页
以Si_(55),Si_(43)M_(12)和Si_(37)M_(18)(M=Fe,Co或Ni)团簇为模型,采用密度泛函理论(DFT)研究了Fe,Co及Ni纳米团簇催化硅粉转化为SiC的机理.计算结果表明,Fe,Co及Ni纳米催化剂先与Si形成合金,拉长并弱化Si—Si键的强度,起到活化Si粉的... 以Si_(55),Si_(43)M_(12)和Si_(37)M_(18)(M=Fe,Co或Ni)团簇为模型,采用密度泛函理论(DFT)研究了Fe,Co及Ni纳米团簇催化硅粉转化为SiC的机理.计算结果表明,Fe,Co及Ni纳米催化剂先与Si形成合金,拉长并弱化Si—Si键的强度,起到活化Si粉的作用;合金的形成有利于C原子的吸附及Si原子和C原子间的反应;Fe的催化能力强于Co和Ni.在此基础上,以Si粉和酚醛树脂为原料,以Fe,Co及Ni硝酸盐为催化剂前驱体,通过微波加热反应制备了3C-SiC纳米粉体.研究了催化剂种类、反应温度、催化剂用量和反应时间等对制备3C-SiC纳米粉体的影响.结果表明,催化剂Fe,Co和Ni的加入均可显著降低3C-SiC的合成温度.当以2.0%(质量分数)的Fe为催化剂时,Si粉在1100℃下反应30 min后即可全部转化为3C-SiC纳米粉体;而在相同条件下,无催化剂时Si粉的完全转化温度为1250℃;Fe的催化效果优于Co和Ni,与DFT计算结果吻合. 展开更多
关键词 密度泛函理论 硅纳米粉体 催化碳化反应 硅粉 酚醛树脂
在线阅读 下载PDF
以Fe为催化剂低温碳化反应合成SiC粉体 被引量:1
2
作者 李俊怡 王军凯 +2 位作者 韩磊 田亮 张海军 《陶瓷学报》 北大核心 2017年第5期722-725,共4页
以单质硅粉和酚醛树脂为原料,以硝酸铁为催化剂前驱体,通过碳化反应的方法合成了β-SiC纳米粉体。研究了催化剂用量、反应温度及保温时间等工艺因素对合成SiC粉体的影响,采用XRD、SEM、TEM及EDS对合成产物进行了表征。结果表明:(1)当催... 以单质硅粉和酚醛树脂为原料,以硝酸铁为催化剂前驱体,通过碳化反应的方法合成了β-SiC纳米粉体。研究了催化剂用量、反应温度及保温时间等工艺因素对合成SiC粉体的影响,采用XRD、SEM、TEM及EDS对合成产物进行了表征。结果表明:(1)当催化剂用量为1.5wt.%时,1250℃反应3 h后所得产物为单相的SiC;而不含催化剂的样品需经1350℃/3 h反应后才能制备出单相的SiC;(2)所合成的SiC颗粒平均粒径约为60 nm。 展开更多
关键词 SIC 粉体 催化碳化反应
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
3
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 北大核心 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 ELECTROCATALYSIS ELECTROLYSIS CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部