期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型
被引量:
8
1
作者
蒋华伟
郭陶
杨震
《科学技术与工程》
北大核心
2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化...
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。
展开更多
关键词
小麦
储藏
品质
多指标分析
粒子群算法
改进粒子群优化-反向传播神经网络(IPSO-BPNN)
预测模型
在线阅读
下载PDF
职称材料
基于ISSA-LSTM的储麦长期品质预测
2
作者
吴兰
王恒
姚远
《中国粮油学报》
CAS
CSCD
北大核心
2024年第9期8-17,共10页
为了解决非时序预测模型无法预测储麦品质时序劣变趋势,以及现有数据驱动的时序预测模型在长期储麦品质预测中因样本不足导致长期预测精度不高的问题,提出一种基于改进麻雀搜索算法(ISSA)优化长短时记忆网络(LSTM)的长期储麦品质预测模...
为了解决非时序预测模型无法预测储麦品质时序劣变趋势,以及现有数据驱动的时序预测模型在长期储麦品质预测中因样本不足导致长期预测精度不高的问题,提出一种基于改进麻雀搜索算法(ISSA)优化长短时记忆网络(LSTM)的长期储麦品质预测模型。首先,提出了一种统计均匀分布方法,利用小麦稳定劣化的生理知识对原始数据进行增强扩容。其次,利用麻雀搜索算法(SSA)对LSTM模型进行优化,克服局部极值点,提高收敛速度。最后,引入t分布函数对SSA位置更新过程进行扰动避免局部最优。结果表明,储麦品质参数中的吸水率、咀嚼度、脂肪酸值和峰值黏度与储藏时间的Spearman相关性较为显著,相关系数均高于0.9,ISSA-LSTM模型预测精度相比于BP、LSTM、SSA-LSTM预测模型分别提高了11.83%、16.98%、26.50%,有助于提高小麦品质预测及分析的准确性。
展开更多
关键词
模式识别与智能系统
储藏小麦品质
预测模型
长短时记忆网络
麻雀搜索算法
统计均匀分布
在线阅读
下载PDF
职称材料
题名
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型
被引量:
8
1
作者
蒋华伟
郭陶
杨震
机构
粮食信息处理与控制教育部重点试验室(河南工业大学)
河南工业大学信息科学与工程学院
出处
《科学技术与工程》
北大核心
2021年第21期8951-8956,共6页
基金
国家自然科学基金(51677055)
河南省自然科学基金(162300410055)
河南省科技攻关项目(212102210499)。
文摘
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。
关键词
小麦
储藏
品质
多指标分析
粒子群算法
改进粒子群优化-反向传播神经网络(IPSO-BPNN)
预测模型
Keywords
storage quality of wheat
multi-indicator analysis
particle swarm optimization
IPSO-BPNN
predictive model
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于ISSA-LSTM的储麦长期品质预测
2
作者
吴兰
王恒
姚远
机构
河南工业大学电气工程学院
出处
《中国粮油学报》
CAS
CSCD
北大核心
2024年第9期8-17,共10页
基金
国家自然科学基金项目(61973103)
河南省高校科技创新团队项目(24IRTSTHN030)
+1 种基金
河南省科技厅自然科学项目(222102220009)
郑州市科技局自然科学项目(22ZZRDZX06)。
文摘
为了解决非时序预测模型无法预测储麦品质时序劣变趋势,以及现有数据驱动的时序预测模型在长期储麦品质预测中因样本不足导致长期预测精度不高的问题,提出一种基于改进麻雀搜索算法(ISSA)优化长短时记忆网络(LSTM)的长期储麦品质预测模型。首先,提出了一种统计均匀分布方法,利用小麦稳定劣化的生理知识对原始数据进行增强扩容。其次,利用麻雀搜索算法(SSA)对LSTM模型进行优化,克服局部极值点,提高收敛速度。最后,引入t分布函数对SSA位置更新过程进行扰动避免局部最优。结果表明,储麦品质参数中的吸水率、咀嚼度、脂肪酸值和峰值黏度与储藏时间的Spearman相关性较为显著,相关系数均高于0.9,ISSA-LSTM模型预测精度相比于BP、LSTM、SSA-LSTM预测模型分别提高了11.83%、16.98%、26.50%,有助于提高小麦品质预测及分析的准确性。
关键词
模式识别与智能系统
储藏小麦品质
预测模型
长短时记忆网络
麻雀搜索算法
统计均匀分布
Keywords
pattern recognition and intelligent system
stored wheat quality
prediction model
long short-term memory network
sparrow search algorithm
statistical uniform distribution
分类号
TS210.4 [轻工技术与工程—粮食、油脂及植物蛋白工程]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型
蒋华伟
郭陶
杨震
《科学技术与工程》
北大核心
2021
8
在线阅读
下载PDF
职称材料
2
基于ISSA-LSTM的储麦长期品质预测
吴兰
王恒
姚远
《中国粮油学报》
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部