研究了储备式锂二氧化锰电池正极的制备工艺。通过X射线衍射(XRD)对不同方法处理二氧化锰的结构进行表征,采用恒流放电及交流阻抗谱方法研究了不同正极制备工艺所得样品的电化学性能。结果表明,通过对正极活性物质二氧化锰的改进、正极...研究了储备式锂二氧化锰电池正极的制备工艺。通过X射线衍射(XRD)对不同方法处理二氧化锰的结构进行表征,采用恒流放电及交流阻抗谱方法研究了不同正极制备工艺所得样品的电化学性能。结果表明,通过对正极活性物质二氧化锰的改进、正极基体和粘合剂的优化选择,电池在0.4 C放电倍率下,放电比容量可达到200 m Ah/g。展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
文摘研究了储备式锂二氧化锰电池正极的制备工艺。通过X射线衍射(XRD)对不同方法处理二氧化锰的结构进行表征,采用恒流放电及交流阻抗谱方法研究了不同正极制备工艺所得样品的电化学性能。结果表明,通过对正极活性物质二氧化锰的改进、正极基体和粘合剂的优化选择,电池在0.4 C放电倍率下,放电比容量可达到200 m Ah/g。
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.