Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
Rock joint shape characteristics,waviness and unevenness play essential but distinct roles in shear mechanism of rock joints.This study presents a novel method to generate virtual rock joint profiles with realistic wa...Rock joint shape characteristics,waviness and unevenness play essential but distinct roles in shear mechanism of rock joints.This study presents a novel method to generate virtual rock joint profiles with realistic waviness and unevenness features.Firstly,joint profiles are obtained by 3D laser scanning device.Secondly,quantification of waviness and unevenness is conducted by traditional method,including digital filtering technique and roughness parameter RL.Thirdly,the discrete Fourier transform(DFT)method is employed to analyze the joint outlines.Two representative Fourier shape descriptors(D3,D8)for characterization of waviness and unevenness are suggested.Then,the inverse discrete Fourier transform(IDFT)is adopted to reconstruct the joint profiles with random values of phase angles but prescribed amplitudes controlled by D3 and D8.The traditional method is then applied to the reconstructed joint profiles to examine statistically the relationships between D3 and D8 and parameters RL of waviness and unevenness,respectively.The results show that larger D8 tends to result in larger waviness while higher D3 tends to increase unevenness.Reference charts for estimation of waviness and unevenness with different pairs of D3 and D8 are also provided to facilitate implementation of random joint reconstruction.展开更多
Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently ...Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.展开更多
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
基金Projects(51478477,51878668)supported by the National Natural Science Foundation of ChinaProjects(2014122006,2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject(201722ts200)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rock joint shape characteristics,waviness and unevenness play essential but distinct roles in shear mechanism of rock joints.This study presents a novel method to generate virtual rock joint profiles with realistic waviness and unevenness features.Firstly,joint profiles are obtained by 3D laser scanning device.Secondly,quantification of waviness and unevenness is conducted by traditional method,including digital filtering technique and roughness parameter RL.Thirdly,the discrete Fourier transform(DFT)method is employed to analyze the joint outlines.Two representative Fourier shape descriptors(D3,D8)for characterization of waviness and unevenness are suggested.Then,the inverse discrete Fourier transform(IDFT)is adopted to reconstruct the joint profiles with random values of phase angles but prescribed amplitudes controlled by D3 and D8.The traditional method is then applied to the reconstructed joint profiles to examine statistically the relationships between D3 and D8 and parameters RL of waviness and unevenness,respectively.The results show that larger D8 tends to result in larger waviness while higher D3 tends to increase unevenness.Reference charts for estimation of waviness and unevenness with different pairs of D3 and D8 are also provided to facilitate implementation of random joint reconstruction.
基金Project(11372263)supported by the National Natural Science Foundation of China
文摘Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.