期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法
1
作者
谢丽霞
魏晨阳
+2 位作者
杨宏宇
胡泽
成翔
《电子学报》
北大核心
2025年第3期849-863,共15页
针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获...
针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获得标准化样本集,利用三通道图像生成与多维度动态加权alpha图像融合方法生成高质量融合图像样本.采用傀儡优化算法进行数据重构,减少因数据类不平衡对检测结果造成的影响,并对重构数据样本进行图像增强.通过基于双分支特征提取与融合通道信息表示的空间注意力增强网络,分别提取图像特征和文本特征并进行特征增强,提高特征表达能力.通过加权融合的方法将增强的图像特征与文本特征进行融合,实现恶意软件家族的检测分类.实验结果表明,本文所提方法在BIG2015数据集上的恶意软件检测分类准确率为99.72%,与现有检测方法相比提升幅度为0.22~2.50个百分点.
展开更多
关键词
恶意软件检测
图像融合
傀儡优化算法
双分支特征提取
数据重构
特征增强
在线阅读
下载PDF
职称材料
题名
基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法
1
作者
谢丽霞
魏晨阳
杨宏宇
胡泽
成翔
机构
中国民航大学计算机科学与技术学院
中国民航大学安全科学与工程学院
扬州大学信息工程学院
中国民航大学民航飞联网重点实验室
出处
《电子学报》
北大核心
2025年第3期849-863,共15页
基金
国家自然科学基金(No.62201576,No.U1833107)
江苏省基础研究计划自然科学基金(No.BK20230558)。
文摘
针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获得标准化样本集,利用三通道图像生成与多维度动态加权alpha图像融合方法生成高质量融合图像样本.采用傀儡优化算法进行数据重构,减少因数据类不平衡对检测结果造成的影响,并对重构数据样本进行图像增强.通过基于双分支特征提取与融合通道信息表示的空间注意力增强网络,分别提取图像特征和文本特征并进行特征增强,提高特征表达能力.通过加权融合的方法将增强的图像特征与文本特征进行融合,实现恶意软件家族的检测分类.实验结果表明,本文所提方法在BIG2015数据集上的恶意软件检测分类准确率为99.72%,与现有检测方法相比提升幅度为0.22~2.50个百分点.
关键词
恶意软件检测
图像融合
傀儡优化算法
双分支特征提取
数据重构
特征增强
Keywords
malware detection
image fusion
puppet optimization algorithm
dual-branch feature extraction
data reconstruction
feature enhancement
分类号
TP309.5 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法
谢丽霞
魏晨阳
杨宏宇
胡泽
成翔
《电子学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部