期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PU学习和自主训练的时间序列分类模型 被引量:1
1
作者 郭芷榕 王会青 白莹莹 《计算机工程与设计》 北大核心 2018年第9期2780-2786,共7页
通过分析PU学习(positive unlabeled learning)的数据分布情况和自主训练算法的迭代过程,针对时间序列监督学习中自主训练算法的过早停止问题,提出基于PU学习和改进的自主训练的时间序列分类模型。针对不同的数据分布,进行不同轮次的迭... 通过分析PU学习(positive unlabeled learning)的数据分布情况和自主训练算法的迭代过程,针对时间序列监督学习中自主训练算法的过早停止问题,提出基于PU学习和改进的自主训练的时间序列分类模型。针对不同的数据分布,进行不同轮次的迭代标记,将所有未标记数据进行标记,有效避免过早停止,增强模型的泛化能力。实验结果表明,该模型在PU学习时间序列分类中,具有较高的分类准确度、分类查全率和分类F1度量值。 展开更多
关键词 时间序列 半监督学习 正例和未标记数据学习 自主训练 停止标准
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部