期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
基于最小二乘孪生极限学习机的水电系统发电能力预测方法
1
作者 李旻 孙大雁 +3 位作者 梁志峰 过夏明 吴刚 苗树敏 《水利水电技术(中英文)》 北大核心 2025年第8期162-174,共13页
【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进... 【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进行分类建模;随后,采用最小二乘孪生极限学习机(LSTELM)对各分解信号进行预测建模,同时运用改进灰狼优化算法(IGWO)对模型参数进行优化,以提升模型的预测性能;最后对各子序列预测结果进行集成,叠加得到最终的预测结果。【结果】结果显示:所提方法在三个水电站中的预测结果精准可靠。在池潭水电站中,预见期为1 d时,所提模型在直接策略和多输入多输出策略中预测结果的纳什系数(NSE)指标较极限学习机模型分别提高了12.88%和12.11%。预见期由1 d增长至8 d时,传统方法预测结果的NSE指标由0.8840和0.8885逐渐降低到0.5735和0.5671,而本文所提两种策略预测结果分别由0.9979和0.9961逐渐降低到0.9423和0.9286。【结论】结果表明:所提模型在复杂水电系统发电能力预测中具有较强的稳定性和泛化能力,SVMD有效降低了发电能力序列的噪声影响,最小二乘法和孪生结构提升了LSTELM模型的泛化能力,SVMD-IGWO-LSTELM模型在水文特性稳定的水电站预测精度更高,在水文特性复杂的水电站预测能力略有下降但依旧保持高精度,为变化环境下水电系统发电能力预测提供有效方法。 展开更多
关键词 逐次变分模态分解法 发电出力 最小二乘孪生极限学习 改进灰狼优化算法 影响因素
在线阅读 下载PDF
基于“十二生肖”算法优化的加权极限学习机月径流预测
2
作者 韩艳 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,... 为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,利用经验小波变换(EWT)对月径流时间序列进行分解处理,得到EWT_(1)、EWT_(2)两个分解分量;采用模糊熵(FuzzyEn)计算EWT_(1)、EWT_(2)分量的模糊熵值,利用EWT^(Ⅱ)对模糊熵值较大的EWT_(1)分量进行二次分解,得到EWT_(1-1)~EWT_(1-3)三个分量.其次,基于EWT_(1-1)~EWT_(1-3)、EWT_(2)分量训练集构建4个WELM输入层权值和隐含层偏差(超参数)优化的实例目标函数,同时选取6个基准测试函数作为对比验证函数,利用“十二生肖”算法分别对6个基准测试函数和4个实例目标函数进行极值寻优与对比分析.最后,建立EWT^(Ⅱ)-“十二生肖”算法-WELM模型,通过云南省南洞地下河月径流预测实例对12种模型进行验证.结果表明:“十二生肖”算法对6个基准测试函数寻优的总排名与对4个实例目标函数寻优的总排名不一致,总体上冠豪猪优化算法(CPO)、野狗优化算法(DOA)寻优效果较好,变色龙算法(CSA)、天牛须搜索算法(BAS)、自学羚羊迁徙算法(SAMA)寻优效果较差;“十二生肖”算法对4个实例目标函数寻优的总排名与12种模型预测精度总排名基本一致,表明“十二生肖”算法极值寻优能力越强,获得的WELM超参数越优,所构建的预测模型性能越好;EWT^(Ⅱ)-CPO/CSO/DOA/CapSA/WHO-WELM模型预测的E_(MAP)、E_(MA)、E_(RMS)分别在0.422%~0.485%、0.022~0.026m^(3)/s、0.028~0.032m^(3)/s之间,优于其他对比模型,具有更好的预测效果. 展开更多
关键词 月径流预测 经验小波变换 次分解 “十生肖”算法 加权极限学习 函数优化
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
3
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小二乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于机器学习与红外光谱技术的变压器油老化行为研究
4
作者 肖忠良 袁荣耀 +6 位作者 付壮 刘成 尹碧露 肖敏之 赵亭亭 匡尹杰 宋刘斌 《光谱学与光谱分析》 北大核心 2025年第2期434-442,共9页
为解决现阶段油品老化分析工作复杂、误差大等问题,提出一种红外光谱与机器学习(ML)相融合的技术。借助傅里叶变换中红外(FT-MIR)光谱仪采集三种变压器油在不同老化时间的样本光谱,运用多种预处理方法对样本光谱进行预处理,以自动寻峰... 为解决现阶段油品老化分析工作复杂、误差大等问题,提出一种红外光谱与机器学习(ML)相融合的技术。借助傅里叶变换中红外(FT-MIR)光谱仪采集三种变压器油在不同老化时间的样本光谱,运用多种预处理方法对样本光谱进行预处理,以自动寻峰并求得特征峰面积之和。采用偏最小二乘回归(PLSR)和粒子群优化-支持向量机回归(PSO-SVR)算法建立了变压器油老化程度定量分析模型,研究并分析了多种光谱数据预处理方法对红外光谱降噪、基线校正等处理效果以及对两种模型定量分析效果的影响。结果表明,油品光谱预处理效果最好的是平滑法,其中SG+SVR和SG+PLSR模型拟合优度(R^(2))分别为0.9814、0.9913,平均绝对误差(MAE)为0.3124、0.2880,均方根误差(RMSE)仅有0.0977、0.3790。在合适的预处理条件下,两种机器学习算法鲁棒性和可靠性均较强,模型预测值与实际值间差异极小。 展开更多
关键词 学习 傅里叶变换中红外光谱 变压器油 老化程度 粒子群优化-支持向量回归(PSO-SVR) 最小二乘回归(PLSR)
在线阅读 下载PDF
基于协同最小二乘支持向量机的Q学习 被引量:20
5
作者 王雪松 田西兰 +1 位作者 程玉虎 易建强 《自动化学报》 EI CSCD 北大核心 2009年第2期214-219,共6页
针对强化学习系统收敛速度慢的问题,提出一种适用于连续状态、离散动作空间的基于协同最小二乘支持向量机的Q学习.该Q学习系统由一个最小二乘支持向量回归机(Least squares support vector regression machine,LS-SVRM)和一个最小二乘... 针对强化学习系统收敛速度慢的问题,提出一种适用于连续状态、离散动作空间的基于协同最小二乘支持向量机的Q学习.该Q学习系统由一个最小二乘支持向量回归机(Least squares support vector regression machine,LS-SVRM)和一个最小二乘支持向量分类机(Least squares support vector classification machine,LS-SVCM)构成.LS-SVRM用于逼近状态-动作对到值函数的映射,LS-SVCM则用于逼近连续状态空间到离散动作空间的映射,并为LS-SVRM提供实时、动态的知识或建议(建议动作值)以促进值函数的学习.小车爬山最短时间控制仿真结果表明,与基于单一LS-SVRM的Q学习系统相比,该方法加快了系统的学习收敛速度,具有较好的学习性能. 展开更多
关键词 强化学习 Q学习 协同 最小二乘支持向量 映射
在线阅读 下载PDF
基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测 被引量:35
6
作者 肖婷 汤宝平 +1 位作者 秦毅 陈昌 《振动与冲击》 EI CSCD 北大核心 2015年第9期149-153,共5页
为更好地表征滚动轴承性能退化趋势,提出基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测新方法。提取振动信号的多域特征组成高维特征集,利用局部保持投影算法(LPP)对多域高维特征集进行维数约简,消除各特征指标之间的冗余、... 为更好地表征滚动轴承性能退化趋势,提出基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测新方法。提取振动信号的多域特征组成高维特征集,利用局部保持投影算法(LPP)对多域高维特征集进行维数约简,消除各特征指标之间的冗余、冲突等问题。将维数约简后的特征向量作为最小二乘支持向量机的输入,建立退化趋势预测模型,完成退化趋势预测。运用实测的滚动轴承全寿命实验数据进行检验,结果表明该方法能获得准确的预测结果。 展开更多
关键词 性能退化评估 信息熵 流形学习 最小二乘支持向量
在线阅读 下载PDF
基于主动学习的最小二乘支持向量机稀疏化 被引量:9
7
作者 余正涛 邹俊杰 +2 位作者 赵兴 苏磊 毛存礼 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第1期12-17,共6页
针对最小二乘支持向量机(LSSVM)稀疏化问题,提出一种基于主动学习的LSSVM数据稀疏化学习算法。首先基于核聚类的方法选取初始样本,并利用LSSVM构建一个最小分类器,然后计算样本在分类器作用下的分布,选择最接近分类面的样本进行标记,最... 针对最小二乘支持向量机(LSSVM)稀疏化问题,提出一种基于主动学习的LSSVM数据稀疏化学习算法。首先基于核聚类的方法选取初始样本,并利用LSSVM构建一个最小分类器,然后计算样本在分类器作用下的分布,选择最接近分类面的样本进行标记,最后将该标记样本加入训练集建立新的分类器,重复上述过程直到模型精度满足要求,以此建立部分样本的LSSVM稀疏化模型。利用加利福尼亚大学欧文分校(UCI)提供的6种数据集进行实验,结果表明,提出的方法使LSSVM的稀疏性提高了46%以上,减少了标注样本带来的成本。 展开更多
关键词 最小二乘支持向量 稀疏化 主动学习 分类
在线阅读 下载PDF
融入深度学习的偏最小二乘优化方法 被引量:8
8
作者 朱志鹏 杜建强 +2 位作者 余日跃 聂斌 喻芳 《计算机应用研究》 CSCD 北大核心 2017年第1期87-90,共4页
偏最小二乘在多元变量分析中得到了广泛的应用。但偏最小二乘方法内部采用主成分分析,不能充分表达数据的非线性特征,对非线性数据的预测精度较低。提出了一种融入深度学习的偏最小二乘优化方法,该方法利用深度学习的稀疏自编码器对特... 偏最小二乘在多元变量分析中得到了广泛的应用。但偏最小二乘方法内部采用主成分分析,不能充分表达数据的非线性特征,对非线性数据的预测精度较低。提出了一种融入深度学习的偏最小二乘优化方法,该方法利用深度学习的稀疏自编码器对特征空间提取非线性结构,将提取的特征成分取代偏最小二乘中的成分,从而形成能适应非线性的模型。分别采用大承气汤、麻杏石甘汤、葛根芩连汤和UCI数据集的数据进行分析处理,实验结果表明,融入深度学习的偏最小二乘优化方法能较好地反映中医药数据的特征。 展开更多
关键词 深度学习 最小二乘 非线性 中医药信息
在线阅读 下载PDF
模糊偏最小二乘支持向量机的应用研究 被引量:11
9
作者 宋海鹰 桂卫华 阳春华 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第5期1344-1347,1352,共5页
基于偏最小二乘回归法和模糊隶属度函数,提出了一种模糊偏最小二乘支持向量机。传统最小二乘支持向量机引入模糊加权系数后,可以根据训练样本点的情况调整折衷系数,有效地提高了最小二乘支持向量机的抗噪性能。同时利用偏最小二乘回归法... 基于偏最小二乘回归法和模糊隶属度函数,提出了一种模糊偏最小二乘支持向量机。传统最小二乘支持向量机引入模糊加权系数后,可以根据训练样本点的情况调整折衷系数,有效地提高了最小二乘支持向量机的抗噪性能。同时利用偏最小二乘回归法,克服了求解线性回归方程中自变量向量间的多重相关性问题。利用sinc函数对该建模方法进行了测试,并进一步对铜转炉吹炼时间的预测问题进行了仿真研究。仿真结果表明,该建模方法具有预测准确、跟踪性能好的优点。 展开更多
关键词 模糊支持向量 最小二乘支持向量 最小二乘回归 智能建模
在线阅读 下载PDF
基于聚类分析与偏最小二乘法的支持向量机PM_(2.5)预测 被引量:7
10
作者 喻其炳 李勇 +3 位作者 白云 姚行艳 成志伟 李川 《环境科学与技术》 CAS CSCD 北大核心 2017年第6期157-164,共8页
考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测... 考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测建模用的训练样本;然后采用偏最小二乘法从影响PM_(2.5)浓度的多种因素中提取主成分,作为各类模型的优化输入;最后根据预测日的气象属性选出合适类别,运用优化后的训练样本和输入变量建立PM_(2.5)浓度预测模型。以北京市某监测点的实际数据为例,运用改进模型和传统模型分别进行实验。结果表明:改进的支持向量机相比传统支持向量机在预测精度上有明显的提高,精度评价指标MAE、MAPE和RMSE分别下降38.10%、50.59%、37.15%。研究实证,引入K-means聚类与偏最小二乘法的手段来提高传统支持向量机在PM_(2.5)浓度预测中的精度具有可行性。 展开更多
关键词 K-MEANS聚类 最小二乘 支持向量 PM2.5浓度预测
在线阅读 下载PDF
回归最小二乘支持向量机的增量和在线式学习算法 被引量:112
11
作者 张浩然 汪晓东 《计算机学报》 EI CSCD 北大核心 2006年第3期400-406,共7页
首先给出回归最小二乘支持向量机的数学模型,并分析了它的性质,然后在此基础上根据分块矩阵计算公式和核函数矩阵本身的特点设计了支持向量机的增量式学习算法和在线学习算法.该算法能充分利用历史的训练结果,减少存储空间和计算时间.... 首先给出回归最小二乘支持向量机的数学模型,并分析了它的性质,然后在此基础上根据分块矩阵计算公式和核函数矩阵本身的特点设计了支持向量机的增量式学习算法和在线学习算法.该算法能充分利用历史的训练结果,减少存储空间和计算时间.仿真实验表明了这两种学习方法的有效性. 展开更多
关键词 结构风险最小 最小二乘支持向量 在线学习
在线阅读 下载PDF
基于偏最小二乘回归分析的混色数据学习算法研究 被引量:8
12
作者 苏晓红 郭茂祖 +1 位作者 王亚东 张田文 《电子学报》 EI CAS CSCD 北大核心 2001年第3期429-431,共3页
考虑到仅从单色色块中发现知识的片面性和不准确性 ,在对 40 0组单色色块进行测试学习的基础上 ,本文提出用偏最小二乘回归分析从 1331组混色数据空间中进一步发现知识 ,使得从RGB到CMYK转换时误差变小 ,从而提高色彩匹配的精度 。
关键词 色彩匹配 学习 知识发现 最小二乘回归分析
在线阅读 下载PDF
结合偏最小二乘法和支持向量机的遥感影像变化检测 被引量:9
13
作者 黄杰 王光辉 +3 位作者 杨化超 胡高强 李建磊 柴文慧 《测绘通报》 CSCD 北大核心 2016年第7期35-38,共4页
针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方... 针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方法中的PLS理论,进行成分提取并构造差异影像;再通过SVM将差异影像分为变化与不变化两类别;最后利用形态学算子对分类结果作处理。选取Landsat8多光谱遥感影像进行试验,结果表明该方法可以很好地实现多光谱影像的变化检测,对地理国情数据监测具有重要意义。 展开更多
关键词 多光谱影像 最小二乘 支持向量 变化检测 多重相关性
在线阅读 下载PDF
优化极限学习机的序列最小优化方法 被引量:18
14
作者 丁晓剑 赵银亮 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第6期7-12,19,共7页
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值... 针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性. 展开更多
关键词 极限学习 支持向量 序列最小优化
在线阅读 下载PDF
基于偏最小二乘回归与支持向量机耦合的咸潮预报模型 被引量:26
15
作者 刘德地 陈晓宏 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期89-92,共4页
利用偏最小二乘回归对影响咸潮的因素进行分析,提取出对因变量影响强的成分,从而克服了变量之间的多重相关性问题;同时利用支持向量机在解决小样本非线性问题上的优势,采用将偏最小二乘回归与支持向量机耦合的方法,建立了咸潮预报模型(P... 利用偏最小二乘回归对影响咸潮的因素进行分析,提取出对因变量影响强的成分,从而克服了变量之间的多重相关性问题;同时利用支持向量机在解决小样本非线性问题上的优势,采用将偏最小二乘回归与支持向量机耦合的方法,建立了咸潮预报模型(PLS-SVM),并应用该模型对珠海市平岗站盐度的变化进行了模拟和预测,研究结果表明,所提出的PLS-SVM模型模拟和预测精度明显优于常用的BP人工神经网络、多元回归模型,可更好地应用于咸潮预报。 展开更多
关键词 最小二乘回归(PLS) 支持向量(SVM) 咸潮预报 珠海市
在线阅读 下载PDF
基于偏最小二乘法的支持向量机短期负荷预测 被引量:14
16
作者 浦星材 沈晓风 +1 位作者 张清扬 邓玉章 《电网与清洁能源》 2011年第10期32-35,42,共5页
提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短... 提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短期负荷预测建模速度快,预测精度高,是种行之有效的方法。 展开更多
关键词 负荷预测 支持向量 最小二乘
在线阅读 下载PDF
无刷直流电机输出转矩的非线性偏最小二乘回归估计 被引量:5
17
作者 张志勇 张飞 +1 位作者 刘志强 张新 《电工技术学报》 EI CSCD 北大核心 2017年第5期62-69,共8页
针对无刷直流电机直接转矩控制系统中,电机输出转矩估计或观测存在需检测电机状态信号难以精确地检测、观测或计算等不可避免的难题,提出一种利用电机线电流和转速两个易检测信号进行电机输出转矩估计的方法。该方法首先基于拉丁超立方... 针对无刷直流电机直接转矩控制系统中,电机输出转矩估计或观测存在需检测电机状态信号难以精确地检测、观测或计算等不可避免的难题,提出一种利用电机线电流和转速两个易检测信号进行电机输出转矩估计的方法。该方法首先基于拉丁超立方抽样方法确定建模数据,确保离散数据的可靠性;然后通过核函数将建模数据中的自变量变换到特征空间,将自变量与因变量之间的非线性关系在特征空间中线性地展开;最后在特征空间中利用偏最小二乘回归方法建立电机输出转矩的估计模型。通过对转矩估计精度和控制系统性能进行分析及实验验证,证明了所提转矩估计方法能准确地估计电机输出转矩,确保电机直接转矩控制系统的性能,该方法具有较强的实用性。 展开更多
关键词 无刷直流电 转矩估计 直接转矩控制 非线性最小二乘
在线阅读 下载PDF
近红外光谱联合机器学习测定樱桃番茄中的番茄红素
18
作者 高翔堃 董璇 +2 位作者 刘超 詹杰 黄青 《量子电子学报》 北大核心 2025年第3期313-323,共11页
针对樱桃番茄中番茄红素的近红外光谱检测,采用机器学习算法建立了定性和定量分析模型。首先对番茄红素的提取与检测方法进行优化,然后基于7000~8000 cm^(-1)和10000~11000 cm^(-1)两个波段的光谱,建立了用于樱桃番茄中番茄红素含量预... 针对樱桃番茄中番茄红素的近红外光谱检测,采用机器学习算法建立了定性和定量分析模型。首先对番茄红素的提取与检测方法进行优化,然后基于7000~8000 cm^(-1)和10000~11000 cm^(-1)两个波段的光谱,建立了用于樱桃番茄中番茄红素含量预测的组合间隔偏最小二乘(siPLS)模型。相较于现阶段的偏最小二乘(PLS)定量模型, siPLS模型在预测准确度方面有一定的提升,其训练集相关系数R_(c)=0.8008,训练集交叉验证均方根误差E_(RMSEC)V=9.56 mg/kg,测试集相关系数R_(p)=0.8683,测试集均方根误差E_(RMSEP)=4.59 mg/kg。进一步引入回归型支持向量机(SVR)算法建立定量模型,对比分析表明,SVR模型比siPLS模型的性能更优,其R_(c)=0.9559,E_(RMSEC)=4.229 mg/kg;R_(p)=0.8959, E_(RMSEP)=8.363 mg/kg。最后,基于支持向量机(SVM)和多通道卷积神经网络(CNN)-门控循环单元(GRU)联合模型,建立了樱桃番茄中番茄红素的浓度分类模型。结果表明,相较于SVR模型,多通道CNN-GRU联合模型具有更高的定性识别准确率。 展开更多
关键词 光谱学 定性和定量分析模型 学习 番茄红素 樱桃番茄 组合间隔最小二乘
在线阅读 下载PDF
稀疏在线无偏置最小二乘支持向量机的预测控制 被引量:12
19
作者 周欣然 滕召胜 蒋星军 《电子测量与仪器学报》 CSCD 2011年第4期331-337,共7页
针对非线性预测控制中的预测模型,设计了稀疏在线无偏置最小二乘支持向量机(SONB-LSSVM),并提出了基于SONB-LSSVM的有约束单步预测控制算法。在每个控制周期,该SONB-LSSVM递推地学习新样本,并删除贡献最小样本。该样本删除技巧能提高学... 针对非线性预测控制中的预测模型,设计了稀疏在线无偏置最小二乘支持向量机(SONB-LSSVM),并提出了基于SONB-LSSVM的有约束单步预测控制算法。在每个控制周期,该SONB-LSSVM递推地学习新样本,并删除贡献最小样本。该样本删除技巧能提高学习样本集的多样性和代表性;与ONB-LSSVM相比,SONB-LSSVM的泛化性能受输入信号频率影响较小。控制量由Brent优化方法计算。由于SONB-LSSVM能及时学习过程动态新特性,该预测控制方法具有良好的自适应能力.液位控制仿真表明,在多种波形的期望输出并有扰动情况下该预测控制方法都是有效的。 展开更多
关键词 预测控制 非线性系统 最小二乘支持向量 学习算法 稀疏性
在线阅读 下载PDF
最小二乘支持向量机的半监督学习算法 被引量:9
20
作者 张健沛 赵莹 杨静 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第10期1088-1092,共5页
将最小二乘支持向量机引入到半监督学习中,提出了一种最小二乘支持向量机的半监督学习算法.采用最小二乘支持向量机训练混合样本集,利用最小二乘支持向量机训练速度快、效率高等优点有效地克服了目前一些半监督支持向量机学习算法时间... 将最小二乘支持向量机引入到半监督学习中,提出了一种最小二乘支持向量机的半监督学习算法.采用最小二乘支持向量机训练混合样本集,利用最小二乘支持向量机训练速度快、效率高等优点有效地克服了目前一些半监督支持向量机学习算法时间代价大、效率低的缺陷.在训练过程中采用区域标注法,减少达到收敛所需要的迭代次数,并给出了SLS-SVM算法具体的数学描述.在人造数据集及实际数据集上的实验表明,最小二乘支持向量机的半监督学习算法可以有效的减少训练时间,提高训练的速度,从而具有更好的推广能力. 展开更多
关键词 半监督学习 支持向量 统计学习理论 最小二乘
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部