期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GA-PSO混合优化SVM的机载EHA故障诊断
被引量:
3
1
作者
覃刚
葛益波
+1 位作者
姚叶明
周清和
《液压与气动》
北大核心
2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti...
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。
展开更多
关键词
机载EHA
遗传算法
粒子群算法
偏二叉树结构
多分类SVM
在线阅读
下载PDF
职称材料
题名
基于GA-PSO混合优化SVM的机载EHA故障诊断
被引量:
3
1
作者
覃刚
葛益波
姚叶明
周清和
机构
中国航空研究院研究生院航空科学与工程学院
中航工业金城南京机电液压工程研究中心
航空机电系统综合航空科技重大实验室
出处
《液压与气动》
北大核心
2024年第5期168-180,共13页
文摘
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。
关键词
机载EHA
遗传算法
粒子群算法
偏二叉树结构
多分类SVM
Keywords
airborne EHA
genetic algorithm
particle swarm optimization
partial binary tree structure
multi-class SVM
分类号
TH137 [机械工程—机械制造及自动化]
V245.1 [航空宇航科学与技术—飞行器设计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GA-PSO混合优化SVM的机载EHA故障诊断
覃刚
葛益波
姚叶明
周清和
《液压与气动》
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部