期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进R3det的无人机电力杆塔倾斜程度检测
被引量:
3
1
作者
胡霞
仲林林
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023年第10期189-200,共12页
无人机巡检图像中的电力杆塔具有多姿态、大长宽比等特点,难以利用特有的先验知识来准确定位和判别不同倾斜程度的杆塔。本文提出了一种改进的R3det网络模型(Multi-Head-KF-R3det),可提高电力杆塔倾斜程度检测精度。首先,在原始R3det中...
无人机巡检图像中的电力杆塔具有多姿态、大长宽比等特点,难以利用特有的先验知识来准确定位和判别不同倾斜程度的杆塔。本文提出了一种改进的R3det网络模型(Multi-Head-KF-R3det),可提高电力杆塔倾斜程度检测精度。首先,在原始R3det中引入倾斜程度分支,实现了电力杆塔类别和倾斜程度的判别以及电力杆塔的准确定位。然后,将基于卡尔曼滤波的旋转交并比损失项引入回归损失函数中,在不增加额外超参的情况下,进一步提升了模型整体检测精度以及倾斜程度检测召回率。最后,基于Ghost轻量化网络设计原理对改进后的模型进行合理压缩,为模型在嵌入式设备中的部署奠定基础。实验结果表明,Multi-Head-KF-R3det在多尺度和多姿态的电力杆塔数据集上检测精度和召回率分别可达94.5%和94.9%。
展开更多
关键词
电力杆塔
无人机巡检
旋转目标
检测
倾斜程度检测
在线阅读
下载PDF
职称材料
题名
基于改进R3det的无人机电力杆塔倾斜程度检测
被引量:
3
1
作者
胡霞
仲林林
机构
东南大学-蒙纳士大学苏州联合研究生院(东南大学)
东南大学电气工程学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023年第10期189-200,共12页
基金
国家自然科学基金(92066106)
江苏省科协青年科技人才托举工程(2021031)
东南大学“至善青年学者”支持计划(中央高校基本科研业务费)(2242022R40022)项目资助。
文摘
无人机巡检图像中的电力杆塔具有多姿态、大长宽比等特点,难以利用特有的先验知识来准确定位和判别不同倾斜程度的杆塔。本文提出了一种改进的R3det网络模型(Multi-Head-KF-R3det),可提高电力杆塔倾斜程度检测精度。首先,在原始R3det中引入倾斜程度分支,实现了电力杆塔类别和倾斜程度的判别以及电力杆塔的准确定位。然后,将基于卡尔曼滤波的旋转交并比损失项引入回归损失函数中,在不增加额外超参的情况下,进一步提升了模型整体检测精度以及倾斜程度检测召回率。最后,基于Ghost轻量化网络设计原理对改进后的模型进行合理压缩,为模型在嵌入式设备中的部署奠定基础。实验结果表明,Multi-Head-KF-R3det在多尺度和多姿态的电力杆塔数据集上检测精度和召回率分别可达94.5%和94.9%。
关键词
电力杆塔
无人机巡检
旋转目标
检测
倾斜程度检测
Keywords
power tower
UAV inspection
rotation object detection
incline detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TH701 [机械工程—精密仪器及机械]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进R3det的无人机电力杆塔倾斜程度检测
胡霞
仲林林
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部