本文在双重差分模型下提出一种新的协变量平衡法估计倾向得分,进而估计受处理者的平均处理效应(The Average Treatment Effect on the Treated,ATT),该方法使控制组协变量逼近基的加权样本均值等于总体协变量逼近基的样本均值。相比于...本文在双重差分模型下提出一种新的协变量平衡法估计倾向得分,进而估计受处理者的平均处理效应(The Average Treatment Effect on the Treated,ATT),该方法使控制组协变量逼近基的加权样本均值等于总体协变量逼近基的样本均值。相比于传统估计方法,本文提出的方法有如下优势,一是,能够有效减少极端估计权重的出现,进而提升目标参数估计量的准确性和稳定性;二是,无需对倾向得分做任何函数形式假定,从而可以有效避免模型误设,且所得ATT估计量的权重自动满足归一化条件;三是,最优化函数满足严凸性且不带任何约束,从而确保解的唯一性和求解简便性。在某些正则条件下,本文证明ATT估计量具有一致性与渐近正态性,并且渐近方差可达到半参数效率的下界。此外,进一步使用蒙特卡罗模拟考察估计方法的有限样本性质,结果表明该方法具有较高的估计精度。最后,基于中国家庭追踪调查数据进行实证分析,进一步验证了精准扶贫政策的有效性。展开更多
倾向得分匹配-双重差分模型(PSM⁃DID)是政策评估及因果推断中最为流行的方法之一.但是在实际应用中,该方法面临着控制变量在处理组样本和控制组样本之间非平衡性的挑战.传统基于均值差异t检验的平衡性检验容易产生片面和误导性的结论,...倾向得分匹配-双重差分模型(PSM⁃DID)是政策评估及因果推断中最为流行的方法之一.但是在实际应用中,该方法面临着控制变量在处理组样本和控制组样本之间非平衡性的挑战.传统基于均值差异t检验的平衡性检验容易产生片面和误导性的结论,使得后续因果推断产生偏误.为克服上述问题,本文对传统的平衡性检验提出以下改进:一是推荐更全面的多维度的平衡性测度指标,便于在匹配后更严谨地比较处理组和控制组的平衡性;二是提出了适用于非平衡样本的新估计方法:倾向得分匹配-逆概率加权-双重差分(PSM⁃IPW⁃DID),该方法结合了倾向得分匹配(PSM)克服样本自选择内生性及对非平衡样本稳健的优势和逆概率加权(inverse probability weighting,IPW)利用全样本信息的长处,在不进一步删除样本的情况下得到一种更稳健的双重差分估计方法.数据模拟和应用实例显示,本文提出的新方法能更全面、客观地评价宏观、微观政策的作用,得到更为可信的因果推断.展开更多
文摘本文在双重差分模型下提出一种新的协变量平衡法估计倾向得分,进而估计受处理者的平均处理效应(The Average Treatment Effect on the Treated,ATT),该方法使控制组协变量逼近基的加权样本均值等于总体协变量逼近基的样本均值。相比于传统估计方法,本文提出的方法有如下优势,一是,能够有效减少极端估计权重的出现,进而提升目标参数估计量的准确性和稳定性;二是,无需对倾向得分做任何函数形式假定,从而可以有效避免模型误设,且所得ATT估计量的权重自动满足归一化条件;三是,最优化函数满足严凸性且不带任何约束,从而确保解的唯一性和求解简便性。在某些正则条件下,本文证明ATT估计量具有一致性与渐近正态性,并且渐近方差可达到半参数效率的下界。此外,进一步使用蒙特卡罗模拟考察估计方法的有限样本性质,结果表明该方法具有较高的估计精度。最后,基于中国家庭追踪调查数据进行实证分析,进一步验证了精准扶贫政策的有效性。
文摘倾向得分匹配-双重差分模型(PSM⁃DID)是政策评估及因果推断中最为流行的方法之一.但是在实际应用中,该方法面临着控制变量在处理组样本和控制组样本之间非平衡性的挑战.传统基于均值差异t检验的平衡性检验容易产生片面和误导性的结论,使得后续因果推断产生偏误.为克服上述问题,本文对传统的平衡性检验提出以下改进:一是推荐更全面的多维度的平衡性测度指标,便于在匹配后更严谨地比较处理组和控制组的平衡性;二是提出了适用于非平衡样本的新估计方法:倾向得分匹配-逆概率加权-双重差分(PSM⁃IPW⁃DID),该方法结合了倾向得分匹配(PSM)克服样本自选择内生性及对非平衡样本稳健的优势和逆概率加权(inverse probability weighting,IPW)利用全样本信息的长处,在不进一步删除样本的情况下得到一种更稳健的双重差分估计方法.数据模拟和应用实例显示,本文提出的新方法能更全面、客观地评价宏观、微观政策的作用,得到更为可信的因果推断.