期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
广义修正随机梯度与广义Skorohod积分 被引量:8
1
作者 周玉兰 程秀强 +1 位作者 薛蕊 李晓慧 《吉林大学学报(理学版)》 CAS 北大核心 2020年第3期479-485,共7页
应用有界算子族的加权Bochner积分,考虑连续时间Guichardet-Fock空间L^2(Γ;η)中广义修正随机梯度■h及过程空间L^2(Γ×R+;η)中的广义Skorohod积分δh,其中h是R上的非负函数,对特殊的h,相应的■h和δh恰是修正随机梯度和Skoroho... 应用有界算子族的加权Bochner积分,考虑连续时间Guichardet-Fock空间L^2(Γ;η)中广义修正随机梯度■h及过程空间L^2(Γ×R+;η)中的广义Skorohod积分δh,其中h是R上的非负函数,对特殊的h,相应的■h和δh恰是修正随机梯度和Skorohod积分.结果表明,■h,δh分别是L^2(Γ;η)和L^2(Γ×R+;η)中的稠定线性闭算子,一般是无界的;对于一类特殊的非负函数h,证明了相应的广义修正随机梯度■h和广义Skorohod积分δh是L^2(Γ;η)和L^2(Γ×R;η)上的有界线性算子;进一步,得到了■h,δh是关于点态修正随机梯度族{■s;s∈R+}}及其共轭族{■s^*;s∈R+}的加权Bochner积分表示,利用该表示及修正随机梯度■和Skorohod积分δ的共轭关系,得到了■h,δh的共轭关系. 展开更多
关键词 BOCHNER积分 修正随机梯度■ 广义修正随机梯度■ Skorohod积分δ 广义Skorohod积分δh
在线阅读 下载PDF
连续时间Guichardet-Fock空间中的Dirichlet形式
2
作者 李晓慧 周玉兰 +1 位作者 房彦兵 张银 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期509-516,共8页
首先,用有界算子的重积分研究连续时间Guichardet-Fock空间L^(2)(Γ;η)中的Dirichlet形式(ε,Domε),得到了(ε,Domε)与加权计数算子S_(ω)之间的关系:1)ε(f,g)=〈〈f,S_(ω)g〉〉,f∈Domε,g∈Dom S_(ω);2)ε(f,f)=‖S_(ω)f‖2,Do... 首先,用有界算子的重积分研究连续时间Guichardet-Fock空间L^(2)(Γ;η)中的Dirichlet形式(ε,Domε),得到了(ε,Domε)与加权计数算子S_(ω)之间的关系:1)ε(f,g)=〈〈f,S_(ω)g〉〉,f∈Domε,g∈Dom S_(ω);2)ε(f,f)=‖S_(ω)f‖2,Domε=Dom S_(ω),f∈Domε.其次,考虑一类算子半群(C_(0)-半群)(T t)t≥0=(e-tS_(ω))t≥0,证明(ε,Domε)与算子半群之间的关系:ε(f,f)=lim t→0+W_(f):1 t(I-e-tS_(ω)),f∈Domε,其中W_(f):(x)=〈〈xf,f〉〉,x∈L^(2)(Γ;η),I为L^(2)(Γ;η)中的平凡表示. 展开更多
关键词 Dirichlet形式 加权计数算子 点态修正随机梯度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部