期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Gash修正模型与神经网络优化模型的刺槐冠层截留模拟 被引量:1
1
作者 马军 韩磊 +3 位作者 周鹏 柳利利 王娜娜 马云蕾 《水土保持研究》 CSCD 北大核心 2024年第4期188-196,共9页
[目的]对比分析Gash修正模型和神经网络模型在模拟和预测人工林冠层截留的适用性,揭示干旱区刺槐冠层截留及其响应过程,为深入了解森林生态水文过程及其调控机制提供科学依据。[方法]于2019年5—10月,以宁夏河东地区刺槐(Robinia pseudo... [目的]对比分析Gash修正模型和神经网络模型在模拟和预测人工林冠层截留的适用性,揭示干旱区刺槐冠层截留及其响应过程,为深入了解森林生态水文过程及其调控机制提供科学依据。[方法]于2019年5—10月,以宁夏河东地区刺槐(Robinia pseudoacacia)人工林为研究对象,定位观测了树干茎流和穿透雨并计算得到冠层截留,采用修正后的Gash模型与神经网络模型对刺槐林林冠截留量进行了模拟。[结果](1)研究区刺槐人工林的穿透雨量、树干茎流量、林冠截留量分别为154.19,5.61,16.5 mm,产生穿透雨和树干茎流的阈值分别为1.37,2.17 mm。(2)Gash修正模型和优化后的神经网络模型均能较好地模拟刺槐冠层截留量,Gash修正模型的绝对误差、均方误差、均方根误差、平均绝对百分比误差分别为0.20%,0.06%,0.24%,52.43%,模拟结果拟合精度达到83%;与Gash修正模型相比,采用麻雀搜索算法优化后的BP神经网络算法模型(SSA-BP),均方误差降低了61.48%,平均绝对误差降低了40.39%,均方根误差降低了37.93%,平均绝对百分比误差降低了50.52%,决定系数提高了1.2%。[结论]在林木冠层截留模拟研究方面,加入麻雀搜索算法后的BP神经网络模型具有较好的可靠性,可以有效降低模拟误差,提高模型的预测精度。 展开更多
关键词 冠层截留 修正后gash模型 神经网络模型 麻雀搜索算法 刺槐林
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部