期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于类别-实例分割的室内点云场景修复补全
被引量:
10
1
作者
缪永伟
刘家宗
+1 位作者
孙瑜亮
吴向阳
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第11期2189-2202,共14页
三维室内场景修复补全是计算机图形学﹑数字几何处理﹑3D计算机视觉中的重要问题.针对室内场景修复补全中难以处理大规模点云数据的问题,本文提出了一种基于类别-实例分割的室内点云场景修复补全框架.该框架包括点云场景分割模块和点云...
三维室内场景修复补全是计算机图形学﹑数字几何处理﹑3D计算机视觉中的重要问题.针对室内场景修复补全中难以处理大规模点云数据的问题,本文提出了一种基于类别-实例分割的室内点云场景修复补全框架.该框架包括点云场景分割模块和点云形状补全模块,前者由基于PointNet的类别分割网络和基于聚类的实例分割模块完成,后者由基于编码器-解码器结构的点云补全网络实现.本文框架以缺失的室内场景点云数据为输入,首先根据“类别-实例”分割策略,采用PointNet对室内场景进行类别分割,并利用基于欧式距离的聚类方法进行实例分割得到室内各家具点云,然后借助点云补全网络将分割出的缺失家具点云逐一进行形状补全并融合进原始场景,最终实现室内点云场景的修复.其中,为了实现缺失家具点云形状的补全,本文提出了一种基于编码器-解码器结构的点云补全网络,首先通过输入变换和特征变换对齐缺失的家具点云数据采样点位置与特征信息;然后借助权共享多层感知器和PointSIFT特征提取模块对各采样点提取形状特征和近邻点特征信息,并利用最大池化层与多层感知器编码提取出采样点的特征码字;最后将采样点特征码字加上网格坐标数据作为解码器的输入,解码器使用两个连续的三层感知器折叠操作将网格数据转变成完整的点云补全数据.实验结果表明,本文提出的点云补全网络能够较好地补全室内场景中缺失的家具结构形状,同时基于该网络的场景修复补全框架能够有效修复大型室内点云场景.
展开更多
关键词
室内场景
点云数据
类别-实例分割
编码器-解码器结构
修复补全
在线阅读
下载PDF
职称材料
融合形状结构恢复和细节补偿的双分支点云修复网络
2
作者
缪永伟
景程宇
+1 位作者
刘复昌
张旭东
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第9期1450-1462,共13页
针对传统点云修复中难以有效地保持原始形状细节结构信息的问题,提出一种融合形状全局结构恢复和局部细节补偿的双分支点云形状修复网络.网络中的形状全局结构恢复分支为编解码-解码器结构,编码器对缺失点云数据进行特征变换以克服点云...
针对传统点云修复中难以有效地保持原始形状细节结构信息的问题,提出一种融合形状全局结构恢复和局部细节补偿的双分支点云形状修复网络.网络中的形状全局结构恢复分支为编解码-解码器结构,编码器对缺失点云数据进行特征变换以克服点云形状的旋转不变性,利用最大池化操作解决点云的无序性问题,并通过多层感知器生成原始点云的特征码字,解码器对编码得到的特征码字使用4个二维网格进行2次折叠操作,拟合点云形状得到粗修复结果;为了补偿点云粗修复结果的形状细节信息,网络中的局部细节补偿分支对编码器提取得到的不同维度特征,通过层次特征学习和多层次特征融合学习点云形状的几何结构特征,有效地恢复缺失点云数据并保留原始形状细节信息;最终将经全局结构恢复分支和局部细节补偿分支分别得到的点云数据拼接融合,再进行迭代最远点重采样,得到点云形状精修复结果.实验结果表明,在ShapeNet数据集上,所提网络比已有网络修复结果的平均CD误差和平均EMD误差分别低16%~29%和19%~65%;在ModelNet数据集上,比已有网络修复结果的平均CD误差和平均EMD误差分别低6%~41%和31%~59%;该网络可以修复原始形状的整体结构信息并能有效地恢复其形状细节,生成采样点分布均匀的完整点云模型,且对模型噪声和不同程度的模型缺失均具有鲁棒性.
展开更多
关键词
点云形状
修复补全
几何细节补偿
双分支网络
编码器-解码器
在线阅读
下载PDF
职称材料
融合缺失点云形状信息的保结构修复网络
被引量:
2
3
作者
张磊
缪永伟
+1 位作者
景程宇
孙树森
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第5期696-707,共12页
传统点云模型修复中由于未考虑输入的缺失点云形状固有特征,难以有效地保持原始形状结构特征信息.为此,提出一种融合缺失点云形状信息的保结构修复网络.该网络采用编码器-解码器结构,借助多层感知器和最大池化层以获得输入点云形状的特...
传统点云模型修复中由于未考虑输入的缺失点云形状固有特征,难以有效地保持原始形状结构特征信息.为此,提出一种融合缺失点云形状信息的保结构修复网络.该网络采用编码器-解码器结构,借助多层感知器和最大池化层以获得输入点云形状的特征码字.其中,编码器以缺失的点云数据作为输入;解码器则对编码得到的点云特征码字使用4个2D网格进行折叠操作以拟合点云形状得到粗修复结果,再将输入点云数据与粗修复结果进行拼接融合,并对融合后的点云数据经过迭代最远点采样得到最终的点云形状修复结果.实验结果表明,与已有网络修复结果相比,该网络在ModelNet40数据集上的平均误差低11%~53%,在ShapeNet数据集上的平均误差低15%~28%,而对具有精细结构的物体修复结果的平均误差低59%~70%.该网络在修复点云形状缺失部分的同时,能够有效地保持输入形状的结构特征信息,对不同程度的数据缺失具有鲁棒性;与已有网络相比,该网络点云修复结果的误差较小、点云分布较均匀.
展开更多
关键词
点云模型
保结构
修复补全
端对端
编码器-解码器
在线阅读
下载PDF
职称材料
题名
基于类别-实例分割的室内点云场景修复补全
被引量:
10
1
作者
缪永伟
刘家宗
孙瑜亮
吴向阳
机构
杭州师范大学信息科学与技术学院
浙江理工大学信息学院
浙江工业大学计算机科学与技术学院
杭州电子科技大学计算机学院
出处
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第11期2189-2202,共14页
基金
国家自然科学基金(No.61972458,61972122)资助.
文摘
三维室内场景修复补全是计算机图形学﹑数字几何处理﹑3D计算机视觉中的重要问题.针对室内场景修复补全中难以处理大规模点云数据的问题,本文提出了一种基于类别-实例分割的室内点云场景修复补全框架.该框架包括点云场景分割模块和点云形状补全模块,前者由基于PointNet的类别分割网络和基于聚类的实例分割模块完成,后者由基于编码器-解码器结构的点云补全网络实现.本文框架以缺失的室内场景点云数据为输入,首先根据“类别-实例”分割策略,采用PointNet对室内场景进行类别分割,并利用基于欧式距离的聚类方法进行实例分割得到室内各家具点云,然后借助点云补全网络将分割出的缺失家具点云逐一进行形状补全并融合进原始场景,最终实现室内点云场景的修复.其中,为了实现缺失家具点云形状的补全,本文提出了一种基于编码器-解码器结构的点云补全网络,首先通过输入变换和特征变换对齐缺失的家具点云数据采样点位置与特征信息;然后借助权共享多层感知器和PointSIFT特征提取模块对各采样点提取形状特征和近邻点特征信息,并利用最大池化层与多层感知器编码提取出采样点的特征码字;最后将采样点特征码字加上网格坐标数据作为解码器的输入,解码器使用两个连续的三层感知器折叠操作将网格数据转变成完整的点云补全数据.实验结果表明,本文提出的点云补全网络能够较好地补全室内场景中缺失的家具结构形状,同时基于该网络的场景修复补全框架能够有效修复大型室内点云场景.
关键词
室内场景
点云数据
类别-实例分割
编码器-解码器结构
修复补全
Keywords
indoor scenes
point cloud data
category-instance segmentation
encoder-decoder structure
shape completion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
融合形状结构恢复和细节补偿的双分支点云修复网络
2
作者
缪永伟
景程宇
刘复昌
张旭东
机构
浙江理工大学计算机科学与技术学院
杭州师范大学信息科学与技术学院
浙江树人学院信息科技学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第9期1450-1462,共13页
基金
浙江省自然科学基金(LZ23F020002)
国家自然科学基金(61972458)
浙江省基础公益研究计划(LGF22F020006)。
文摘
针对传统点云修复中难以有效地保持原始形状细节结构信息的问题,提出一种融合形状全局结构恢复和局部细节补偿的双分支点云形状修复网络.网络中的形状全局结构恢复分支为编解码-解码器结构,编码器对缺失点云数据进行特征变换以克服点云形状的旋转不变性,利用最大池化操作解决点云的无序性问题,并通过多层感知器生成原始点云的特征码字,解码器对编码得到的特征码字使用4个二维网格进行2次折叠操作,拟合点云形状得到粗修复结果;为了补偿点云粗修复结果的形状细节信息,网络中的局部细节补偿分支对编码器提取得到的不同维度特征,通过层次特征学习和多层次特征融合学习点云形状的几何结构特征,有效地恢复缺失点云数据并保留原始形状细节信息;最终将经全局结构恢复分支和局部细节补偿分支分别得到的点云数据拼接融合,再进行迭代最远点重采样,得到点云形状精修复结果.实验结果表明,在ShapeNet数据集上,所提网络比已有网络修复结果的平均CD误差和平均EMD误差分别低16%~29%和19%~65%;在ModelNet数据集上,比已有网络修复结果的平均CD误差和平均EMD误差分别低6%~41%和31%~59%;该网络可以修复原始形状的整体结构信息并能有效地恢复其形状细节,生成采样点分布均匀的完整点云模型,且对模型噪声和不同程度的模型缺失均具有鲁棒性.
关键词
点云形状
修复补全
几何细节补偿
双分支网络
编码器-解码器
Keywords
point cloud shape
shape completion
geometric detail compensation
double-branch network
en-coder-decode
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
融合缺失点云形状信息的保结构修复网络
被引量:
2
3
作者
张磊
缪永伟
景程宇
孙树森
机构
浙江理工大学计算机科学与技术学院
杭州师范大学信息科学与技术学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第5期696-707,共12页
基金
国家自然科学基金(61972458)
浙江省自然科学基金(LZ23F020002)。
文摘
传统点云模型修复中由于未考虑输入的缺失点云形状固有特征,难以有效地保持原始形状结构特征信息.为此,提出一种融合缺失点云形状信息的保结构修复网络.该网络采用编码器-解码器结构,借助多层感知器和最大池化层以获得输入点云形状的特征码字.其中,编码器以缺失的点云数据作为输入;解码器则对编码得到的点云特征码字使用4个2D网格进行折叠操作以拟合点云形状得到粗修复结果,再将输入点云数据与粗修复结果进行拼接融合,并对融合后的点云数据经过迭代最远点采样得到最终的点云形状修复结果.实验结果表明,与已有网络修复结果相比,该网络在ModelNet40数据集上的平均误差低11%~53%,在ShapeNet数据集上的平均误差低15%~28%,而对具有精细结构的物体修复结果的平均误差低59%~70%.该网络在修复点云形状缺失部分的同时,能够有效地保持输入形状的结构特征信息,对不同程度的数据缺失具有鲁棒性;与已有网络相比,该网络点云修复结果的误差较小、点云分布较均匀.
关键词
点云模型
保结构
修复补全
端对端
编码器-解码器
Keywords
point cloud
structure-preserving
shape completion
end-to-end
encoder-decoder
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于类别-实例分割的室内点云场景修复补全
缪永伟
刘家宗
孙瑜亮
吴向阳
《计算机学报》
EI
CAS
CSCD
北大核心
2021
10
在线阅读
下载PDF
职称材料
2
融合形状结构恢复和细节补偿的双分支点云修复网络
缪永伟
景程宇
刘复昌
张旭东
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
3
融合缺失点云形状信息的保结构修复网络
张磊
缪永伟
景程宇
孙树森
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部