在低信噪比情况下,该文提出一种新的针对正交频分复用(OFDM)系统信道阶数和噪声方差的非数据辅助(NDA)估计算法。算法中应用了一种新的基于联合极大几何均值(MGM)的代价函数。新的代价函数不仅利用了循环前缀(CP)冗余性,同时也利用了信...在低信噪比情况下,该文提出一种新的针对正交频分复用(OFDM)系统信道阶数和噪声方差的非数据辅助(NDA)估计算法。算法中应用了一种新的基于联合极大几何均值(MGM)的代价函数。新的代价函数不仅利用了循环前缀(CP)冗余性,同时也利用了信道记忆性。对比只利用了CP的方法,该算法可以在低信噪比情况下更准确地估计信道阶数和噪声方差。仿真结果表明,在低信噪比情况下,该算法针对信道阶数的估计得到约10 d B的信噪比增益;同时,对噪声方差的估计,该算法显著提高了估计精度,抑制了信噪比20 d B以下估计性能恶化的现象。展开更多
为了提高稀疏信道环境下同相/正交(I/Q)不平衡正交频分复用(OFDM)系统的性能,该文提出了一种低复杂度的门限时域最小二乘信道估计算法。该算法通过估计噪声方差确定合适的门限过滤信道响应采样点内的噪声以提高估计精度。仿真结果表明,...为了提高稀疏信道环境下同相/正交(I/Q)不平衡正交频分复用(OFDM)系统的性能,该文提出了一种低复杂度的门限时域最小二乘信道估计算法。该算法通过估计噪声方差确定合适的门限过滤信道响应采样点内的噪声以提高估计精度。仿真结果表明,该文算法估计精度与现有频域和时域最小二乘信道估计方法相比分别提升了6 d B、2 d B,逼近基于压缩感知的时域迭代收缩算法,且计算复杂度低于后者。展开更多
文摘在低信噪比情况下,该文提出一种新的针对正交频分复用(OFDM)系统信道阶数和噪声方差的非数据辅助(NDA)估计算法。算法中应用了一种新的基于联合极大几何均值(MGM)的代价函数。新的代价函数不仅利用了循环前缀(CP)冗余性,同时也利用了信道记忆性。对比只利用了CP的方法,该算法可以在低信噪比情况下更准确地估计信道阶数和噪声方差。仿真结果表明,在低信噪比情况下,该算法针对信道阶数的估计得到约10 d B的信噪比增益;同时,对噪声方差的估计,该算法显著提高了估计精度,抑制了信噪比20 d B以下估计性能恶化的现象。
文摘为了提高稀疏信道环境下同相/正交(I/Q)不平衡正交频分复用(OFDM)系统的性能,该文提出了一种低复杂度的门限时域最小二乘信道估计算法。该算法通过估计噪声方差确定合适的门限过滤信道响应采样点内的噪声以提高估计精度。仿真结果表明,该文算法估计精度与现有频域和时域最小二乘信道估计方法相比分别提升了6 d B、2 d B,逼近基于压缩感知的时域迭代收缩算法,且计算复杂度低于后者。