期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于细化多尺度深度特征的目标检测网络 被引量:13
1
作者 李雅倩 盖成远 +2 位作者 肖存军 吴超 刘佳甲 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2360-2366,共7页
现有深度卷积神经网络中感受野尺度单一,无法适应目标的尺度变化和边界形变,故此本文提出了一种提取并融合多尺度特征的目标检测网络.该网络通过减少池化并在网络底层加入空间加信道压缩激励模块来突出可利用的细节信息,生成高质量的特... 现有深度卷积神经网络中感受野尺度单一,无法适应目标的尺度变化和边界形变,故此本文提出了一种提取并融合多尺度特征的目标检测网络.该网络通过减少池化并在网络底层加入空间加信道压缩激励模块来突出可利用的细节信息,生成高质量的特征图;此外,在深层网络中加入可变多尺度特征融合模块,该模块具有多种尺度的感受野并可根据物体边界预测采样位置,最后通过融合多尺度特征使网络具有更强的特征表达能力并且对不同尺度实例及其边界信息更具鲁棒性.实验证明,本文结构实现了比原有结构更高的平均精度,与目前主流目标检测算法相比也具有一定优势. 展开更多
关键词 目标检测 特征金字塔网络 可变形卷积 信道空间压缩激励 多尺度特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部