期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
极大极小问题的光滑化信赖域共轭梯度法 被引量:2
1
作者 叶峰 刘红卫 +1 位作者 周水生 刘三阳 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期941-945,共5页
目的求解无约束有限极大极小问题。方法利用光滑函数将极大极小问题转化为可微的无约束优化问题。结果给出了信赖域牛顿共轭梯度法解该优化问题的算法。结论该算法是可行的、有效的,尤其是对于大规模问题,该算法与其他方法相比具有明显... 目的求解无约束有限极大极小问题。方法利用光滑函数将极大极小问题转化为可微的无约束优化问题。结果给出了信赖域牛顿共轭梯度法解该优化问题的算法。结论该算法是可行的、有效的,尤其是对于大规模问题,该算法与其他方法相比具有明显的优势。 展开更多
关键词 有限极大极小问题 光滑方法 无约束优化 SQP算法 信赖牛顿共轭梯度算法
在线阅读 下载PDF
L2损失大规模线性非平行支持向量顺序回归模型 被引量:5
2
作者 石勇 李佩佳 汪华东 《自动化学报》 EI CSCD 北大核心 2019年第3期505-517,共13页
顺序回归是一种标签具有序信息的多分类问题,广泛存在于信息检索、推荐系统、情感分析等领域.随着互联网、移动通信等技术的发展,面对大量具有大规模、高维、稀疏等特征的数据,传统的顺序回归算法往往表现不足.非平行支持向量顺序回归... 顺序回归是一种标签具有序信息的多分类问题,广泛存在于信息检索、推荐系统、情感分析等领域.随着互联网、移动通信等技术的发展,面对大量具有大规模、高维、稀疏等特征的数据,传统的顺序回归算法往往表现不足.非平行支持向量顺序回归模型具有适应性强,在性能上优于其他基于SVM的方法等优点,该文在此模型基础上提出基于L2损失的大规模线性非平行支持向量顺序回归模型,其中线性模型的设计可处理大规模数据,基于L2的损失可使标签偏离较大的样本得到更大惩罚.此外,该文从模型的两种不同角度分别设计了信赖域牛顿算法和坐标下降算法求解该线性模型,并比较了两种算法在性能上的差异.为验证模型的有效性,该文在大量数据集上对提出的模型及算法进行了分析,结果表明,该文提出的模型表现最优,尤其采用坐标下降算法求解的该模型在数据集上获得了最好的测试性能. 展开更多
关键词 顺序回归 支持向量机 信赖域牛顿算法 对偶坐标下降算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部