6H-SiC single crystals were grown by sublimation method. It is found that foreign grains occur frequently on the facets of the crystals. To characterize the foreign grain, a longitudinal and a sectional cut samples we...6H-SiC single crystals were grown by sublimation method. It is found that foreign grains occur frequently on the facets of the crystals. To characterize the foreign grain, a longitudinal and a sectional cut samples were prepared by standard mechanical processing method. Raman spectrum confirms that the foreign grain is actually a mis-oriented 6H-SiC grain. The surface structure of the foreign grain was studied by chemical etching and optical microscopy. It is shown that etch pits in foreign grain region take the shape of isosceles triangle, which are different from those in mono-crystalline region, and high density stacking faults are observed on the surface of the foreign grain. The orientation of foreign grain surface is determined to be (10]-4) plane by back-scattering X-ray Laue image. The X-ray powder diffraction reveals that the powder is partly graphitized after a long crystal growth rim. Therefore it is believed that the loss of Si results in the formation of C inclusions, which is responsible for the nucleation of foreign grain in the facet region.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
基金Projects(2006AA03A145,2007AA03Z405) supported by the National High-Tech Research and Development Program of ChinaProjects(50721002,50802053) supported by the National Natural Science Foundation of ChinaProject (707039) supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘6H-SiC single crystals were grown by sublimation method. It is found that foreign grains occur frequently on the facets of the crystals. To characterize the foreign grain, a longitudinal and a sectional cut samples were prepared by standard mechanical processing method. Raman spectrum confirms that the foreign grain is actually a mis-oriented 6H-SiC grain. The surface structure of the foreign grain was studied by chemical etching and optical microscopy. It is shown that etch pits in foreign grain region take the shape of isosceles triangle, which are different from those in mono-crystalline region, and high density stacking faults are observed on the surface of the foreign grain. The orientation of foreign grain surface is determined to be (10]-4) plane by back-scattering X-ray Laue image. The X-ray powder diffraction reveals that the powder is partly graphitized after a long crystal growth rim. Therefore it is believed that the loss of Si results in the formation of C inclusions, which is responsible for the nucleation of foreign grain in the facet region.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.