利用AI(artificial intelligence)技术可从遥感影像上快速提取矢量数据,尤其可以获取实时性较好的矢量路网数据,但提取的数据没有属性信息;而已有的众源数据如OSM(open street map)路网具有开源、属性信息丰富等特点,但现势性相对于提...利用AI(artificial intelligence)技术可从遥感影像上快速提取矢量数据,尤其可以获取实时性较好的矢量路网数据,但提取的数据没有属性信息;而已有的众源数据如OSM(open street map)路网具有开源、属性信息丰富等特点,但现势性相对于提取路网较低。针对上述情况,以AI提取路网为基准数据,OSM路网为匹配数据,将一种基于多因子几何匹配算法用于路网匹配中,并在匹配后引入匹配度的概念,以最优匹配对象进行属性重建。实验结果表明能有效地对AI提取路网的属性信息进行重建,并基于此开发了一套路网属性信息重建系统,在国家全球测图项目中投入使用。展开更多
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme...To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model.展开更多
文摘利用AI(artificial intelligence)技术可从遥感影像上快速提取矢量数据,尤其可以获取实时性较好的矢量路网数据,但提取的数据没有属性信息;而已有的众源数据如OSM(open street map)路网具有开源、属性信息丰富等特点,但现势性相对于提取路网较低。针对上述情况,以AI提取路网为基准数据,OSM路网为匹配数据,将一种基于多因子几何匹配算法用于路网匹配中,并在匹配后引入匹配度的概念,以最优匹配对象进行属性重建。实验结果表明能有效地对AI提取路网的属性信息进行重建,并基于此开发了一套路网属性信息重建系统,在国家全球测图项目中投入使用。
基金Projects(61174115,51104044)supported by the National Natural Science Foundation of ChinaProject(L2010153)supported by Scientific Research Project of Liaoning Provincial Education Department,China
文摘To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model.