In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a...A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a server's workload increases as the query request increases when a server sends a client information. To solve this problem, we propose the BLI. The BLI denotes an object and a node as 0 and 1 in the Hilbert curve(HC) map. The BLI can identify the position of a node and an object through bit information; it can also reduce the broadcasting frequency of a server by reducing the size of the index, thereby decreasing the access latency and query processing times. Moreover, the BLI is highly effective for data filtering, as it can identify the positions of both an object and a node. In a road network, if filtering is done via the Euclidean distance, it may result in an error. To prevent this, we add another validation procedure. The experiment is conducted by applying the BLI to kNN query, and the technique is assessed by a performance evaluation experiment.展开更多
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF2013R1A1A1004593, 2013R1A1A1A05012348)
文摘A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a server's workload increases as the query request increases when a server sends a client information. To solve this problem, we propose the BLI. The BLI denotes an object and a node as 0 and 1 in the Hilbert curve(HC) map. The BLI can identify the position of a node and an object through bit information; it can also reduce the broadcasting frequency of a server by reducing the size of the index, thereby decreasing the access latency and query processing times. Moreover, the BLI is highly effective for data filtering, as it can identify the positions of both an object and a node. In a road network, if filtering is done via the Euclidean distance, it may result in an error. To prevent this, we add another validation procedure. The experiment is conducted by applying the BLI to kNN query, and the technique is assessed by a performance evaluation experiment.