期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
结合Kriging模型权重信息熵函数的结构可靠性研究
1
作者 李景奎 刘文琪 +1 位作者 周岩 李战东 《机械设计与制造》 北大核心 2024年第10期168-171,177,共5页
为提高基于Kriging模型信息熵函数(Information Entropy Function,H)的可靠性计算效率,考虑样本点与极限状态曲面的空间距离和随机变量的概率密度函数,通过对样本点的信息熵赋予不同的权值,提出权重信息熵函数(Weight Information Entro... 为提高基于Kriging模型信息熵函数(Information Entropy Function,H)的可靠性计算效率,考虑样本点与极限状态曲面的空间距离和随机变量的概率密度函数,通过对样本点的信息熵赋予不同的权值,提出权重信息熵函数(Weight Information Entropy Function,WH)。该学习函数选择更接近极限状态曲面且概率密度函数值较大的样本点更新Kriging模型,从而减少对功能函数的调用次数,有效提高可靠性计算效率。通过算例表明:与其他学习函数相比,WH学习函数在建立Kriging模型过程中所需要的样本点更少,收敛速度更快,计算效率更高。 展开更多
关键词 结构可靠性分析 KRIGING模型 学习函数 权重信息熵函数 概率密度函数
在线阅读 下载PDF
基于非下采样Contourlet变换耦合特征选择机制的可见光与红外图像融合算法 被引量:8
2
作者 罗娟 王立平 《电子测量与仪器学报》 CSCD 北大核心 2021年第7期163-169,共7页
为了克服当下较多可见光与红外图像融合方法因忽略了光谱特征而导致融合图像存在光谱扭曲、目标内容显著度较差等不足,提出了非下采样Contourlet变换(nonsubsampled contourlet transform, NSCT)耦合特征选择机制的图像融合算法。首先,... 为了克服当下较多可见光与红外图像融合方法因忽略了光谱特征而导致融合图像存在光谱扭曲、目标内容显著度较差等不足,提出了非下采样Contourlet变换(nonsubsampled contourlet transform, NSCT)耦合特征选择机制的图像融合算法。首先,通过NSCT对可见光与红外图像计算,分离出其不同图像系数。然后,利用信息熵函数,度量图像所含信息量的丰富度,以形成低频系数的融合系数,得到富含红外目标等丰富信息的融合低频系数。采用像素点的邻点信息,度量图像的清晰度特征,并引入均值函数,度量图像的光谱特征,再联合图像的清晰度特征,构造特征选择机制,从图像中选择理想的高频系数融合函数,获取兼顾细节特征和光谱特征的融合高频系数。最后,通过实验结果发现,较现有的融合算法而言,所提算法拥有更好的融合质量,更好地保持了图像的光谱特征,且目标内容显著。 展开更多
关键词 可见光与红外图像融合 非下采样CONTOURLET变换 特征选择机制 信息熵函数 清晰度特征 光谱特征
在线阅读 下载PDF
Fuzzy entropy design for non convex fuzzy set and application to mutual information 被引量:7
3
作者 LEE Sang-Hyuk LEE Sang-Min +1 位作者 SOHN Gyo-Yong KIM Jaeh-Yung 《Journal of Central South University》 SCIE EI CAS 2011年第1期184-189,共6页
Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure ... Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed. 展开更多
关键词 fuzzy entropy non convex fuzzy membership function distance measure similarity measure mutual information
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部