期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
1
作者
许涛
南新元
+1 位作者
蔡鑫
赵濮
《南京信息工程大学学报》
北大核心
2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,...
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案.
展开更多
关键词
去噪自编码器
动量编码器
动态队列
信息噪声对比估计
时间卷积网络
TRANSFORMER
在线阅读
下载PDF
职称材料
题名
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
1
作者
许涛
南新元
蔡鑫
赵濮
机构
新疆大学电气工程学院
出处
《南京信息工程大学学报》
北大核心
2025年第4期455-466,共12页
基金
国家自然科学基金(62303394)
新疆维吾尔自治区自然科学基金(2022D01C694)
新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2023P025)。
文摘
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案.
关键词
去噪自编码器
动量编码器
动态队列
信息噪声对比估计
时间卷积网络
TRANSFORMER
Keywords
denoising autoencoder(DAE)
momentum encoder
dynamic queue
information noise-contrastive estimation(InfoNCE)
temporal convolutional network(TCN)
Transformer
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
TP212 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
许涛
南新元
蔡鑫
赵濮
《南京信息工程大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部