期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进GCN-sbuLSTM模型的高速公路交通量预测方法 被引量:2
1
作者 李嘉 文婧 +3 位作者 周正 苏骁 杜朝阳 杨婉澜 《交通运输研究》 2024年第3期56-65,共10页
为解决现有高速公路交通量预测方法在捕捉动态时空依赖关系方面的不足,提出了一种融合信息几何方法与注意力机制的新型高速路网交通量预测模型。首先,利用信息几何方法量化ETC门架之间的动态数据分布差异。然后,利用注意力机制来捕获交... 为解决现有高速公路交通量预测方法在捕捉动态时空依赖关系方面的不足,提出了一种融合信息几何方法与注意力机制的新型高速路网交通量预测模型。首先,利用信息几何方法量化ETC门架之间的动态数据分布差异。然后,利用注意力机制来捕获交通的动态空间依赖关系。最后,结合一种堆叠的双向递归层结构,提出了一种长时间跨度的并行子模型算法,即基于信息几何方法(Information Geometry)和注意力机制(Attention Mechanism)优化的图卷积神经网络(GCN)结合堆叠双向单向长短期记忆神经网络(sbuLSTM)的组合模型—IGAGCN-sbuLSTM。采用该模型对100多条路段、3000多处门架近7亿条高速公路ETC门架系统数据进行分析,结果显示:与LSTM、GCN、GCN-LSTM、ASTGCN等现有4种模型相比,在10 min时间尺度下,IGAGCN-sbuLSTM组合模型的平均绝对误差(MAE)分别降低了2.39,3.72,1.02,1.46,均方根误差(RMSE)分别降低了3.25,4.32,2.05,5.65,平均绝对百分比误差(MAPE)分别降低了5.49%,12.54%,1.56%,0.5%。研究表明,IGAGCN-sbuLSTM模型在预测精度和不同时间间隔的预测性能上均优于现有的单一捕获特性模型及其他常用的组合模型,可广泛应用于高速公路收费、车速等数据的预测分析。 展开更多
关键词 高速公路 交通量预测 ETC门架系统 信息几何方法 注意力机制 堆叠双向单向长短期记忆神经网络 图卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部