Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not conside...Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.展开更多
For solving the difficult problem of leakage detection in city gas pipelines, a method using acoustic technique based on instantaneous energy (IE) distribution and correlation analysis was proposed. Firstly, the basic...For solving the difficult problem of leakage detection in city gas pipelines, a method using acoustic technique based on instantaneous energy (IE) distribution and correlation analysis was proposed. Firstly, the basic theory of leakage detection and location was introduced. Then the physical relationship between instantaneous energy and structural state variation of a system was analyzed theoretically. With HILBERT-HUANG transformation (HHT), the instantaneous energy distribution feature of an unstable acoustic signal was obtained. According to the relative contribution method of the instantaneous energy, the noise in signal was eliminated effectively. Furthermore, in order to judge the leakage, the typical characteristic of the instantaneous energy of signal in the input and output end was discussed using correlative analysis. A number of experiments were carried out to classify the leakage from normal operations, and the results show that the leakages are successfully detected and the average recognition rate reaches 93.3% among three group samples. It is shown that the method using acoustic technique with IED and correlative analysis is effective and it may be referred in other pipelines.展开更多
基金Projects(61773405,61725306,61533020)supported by the National Natural Science Foundation of ChinaProject(2018zzts583)supported by the Fundamental Research Funds for the Central Universities,China
文摘Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.
基金Project(51004005) supported by the National Natural Science Foundation of ChinaProject supported by Open Research Fund Program of Beijing Engineering Research Center of Monitoring for Construction Safety (Beijing University of Civil Engineering and Architecture), China
文摘For solving the difficult problem of leakage detection in city gas pipelines, a method using acoustic technique based on instantaneous energy (IE) distribution and correlation analysis was proposed. Firstly, the basic theory of leakage detection and location was introduced. Then the physical relationship between instantaneous energy and structural state variation of a system was analyzed theoretically. With HILBERT-HUANG transformation (HHT), the instantaneous energy distribution feature of an unstable acoustic signal was obtained. According to the relative contribution method of the instantaneous energy, the noise in signal was eliminated effectively. Furthermore, in order to judge the leakage, the typical characteristic of the instantaneous energy of signal in the input and output end was discussed using correlative analysis. A number of experiments were carried out to classify the leakage from normal operations, and the results show that the leakages are successfully detected and the average recognition rate reaches 93.3% among three group samples. It is shown that the method using acoustic technique with IED and correlative analysis is effective and it may be referred in other pipelines.