期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进樽海鞘群算法的含瓦斯煤破裂过程信号特征识别
1
作者 付华 管智峰 +2 位作者 刘尚霖 刘昊 陈子林 《传感技术学报》 CAS CSCD 北大核心 2024年第2期256-267,共12页
针对标准樽海鞘群算法存在的计算精度不足、易陷入局部停滞等缺陷,提出一种多策略融合的樽海鞘群算法。在初始化阶段,引入线性同余法随机发生器;利用野马算法优化樽海鞘领导者位置;采用金豺算法改进樽海鞘种群追随机制。通过测试函数寻... 针对标准樽海鞘群算法存在的计算精度不足、易陷入局部停滞等缺陷,提出一种多策略融合的樽海鞘群算法。在初始化阶段,引入线性同余法随机发生器;利用野马算法优化樽海鞘领导者位置;采用金豺算法改进樽海鞘种群追随机制。通过测试函数寻优对比实验,证明多策略融合的樽海鞘群算法相比于其他智能算法在鲁棒性与稳定性方面均有显著提升。将多策略融合的樽海鞘群算法应用到含瓦斯煤破裂过程信号特征识别,实验结果表明:提出的含瓦斯煤破裂过程信号特征识别模型具有更好的表现,准确率可达93.33%,相比其他识别模型,识别率更高。 展开更多
关键词 含瓦斯煤破裂 智能优化算法 樽海鞘群算法 多策略融合 信号特征识别
在线阅读 下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法 被引量:1
2
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
在线阅读 下载PDF
氨燃料发动机腐蚀损伤激光超声Lamb波检测改进
3
作者 孙小广 万若楠 余光正 《激光与红外》 北大核心 2025年第2期233-238,共6页
当前激光超声Lamb波在氨燃料发动机表面进行无损检测时,频散较为严重,存在多模态现象,使得信号复杂,不能完全消除频散效应一直是该领域的难题。提出基于激光超声Lamb波的氨燃料发动机腐蚀损伤检测改进方法。激光激励与接收捕获氨燃料发... 当前激光超声Lamb波在氨燃料发动机表面进行无损检测时,频散较为严重,存在多模态现象,使得信号复杂,不能完全消除频散效应一直是该领域的难题。提出基于激光超声Lamb波的氨燃料发动机腐蚀损伤检测改进方法。激光激励与接收捕获氨燃料发动机上的一维激光超声Lamb波信号的同时,引入一种线性映射频散补偿法,对信号中的频散效应实施有效修正;通过短空间二维傅里叶变换得到特定中心频率下信号的频率、波数及空间位置信息的幅值-空间-波数谱,判断氨燃料发动机在扫描路径上的腐蚀损伤大概位置;根据信号特征,采用RAPID方法确定发动机腐蚀损伤的精确位置,实现腐蚀损伤检测。实验结果表明:经所提方法补偿后,信号波形显著改善,时域紧凑,频域特征清晰,并且所提方法能够有效提高氨燃料发动机腐蚀损伤检测的精度和可靠性。 展开更多
关键词 激光超声Lamb波 线性映射频散补偿 信号特征识别 RAPID 腐蚀损伤检测
在线阅读 下载PDF
科式质量流量计故障检测校正算法 被引量:2
4
作者 杨俊 陈明 张零霞 《传感器技术》 CSCD 北大核心 2004年第2期56-58,共3页
提出了一种基于信号特征识别的科氏质量流量计故障检测、校正算法。该方法通过向已有的软件中增加相应的算法实现,不增加系统成本而提高了测量准确度;仿真和实测结果表明:本文所研究的方法是可行的、有效的。
关键词 科式质量流量计 故障检测 校正算法 信号特征识别 系统成本
在线阅读 下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
5
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
A bearing fault diagnosis method based on sparse decomposition theory 被引量:1
6
作者 张新鹏 胡茑庆 +1 位作者 胡雷 陈凌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1961-1969,共9页
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat... The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals. 展开更多
关键词 fault diagnosis sparse decomposition dictionary learning representation error
在线阅读 下载PDF
Seismic signal recognition using improved BP neural network and combined feature extraction method 被引量:1
7
作者 彭朝琴 曹纯 +1 位作者 黄姣英 刘秋生 《Journal of Central South University》 SCIE EI CAS 2014年第5期1898-1906,共9页
Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural... Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network. 展开更多
关键词 seismic signal feature extraction BP neural network signal identification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部