在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法...在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基...复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基于DETR_S(DEtection with TRansformer on Signal)的卫星信号智能检测方法.DETR_S以编码器-解码器架构为基础,利用Transformer网络全局建模能力捕获频谱信息,采用多头自注意力机制有效改善频谱信息长距离依赖的问题.基于匈牙利算法的预测框匹配模块摒弃了非极大值抑制的数据后处理步骤,将信号检测问题转变为集合预测问题,使模型并行输出检测结果.引入信号重构模块,将频谱重构损失函数加入损失函数中,辅助模型挖掘频谱深层表征,提升信号检测性能.实验结果表明,在仅使用信号频谱幅度信息条件下,DETR_S能够在信噪比等于0dB及以上对卫星信号进行精确检测(>95%),优于典型的目标检测方法.展开更多
文摘在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘复杂电磁环境下卫星信号往往淹没在背景和噪声中,传统的信号检测算法在没有准确先验知识的情况下性能急剧降低,目前基于深度学习的信号检测算法往往需要依赖专家经验的数据后处理步骤,无法对信号进行端到端检测.针对上述缺陷,提出一种基于DETR_S(DEtection with TRansformer on Signal)的卫星信号智能检测方法.DETR_S以编码器-解码器架构为基础,利用Transformer网络全局建模能力捕获频谱信息,采用多头自注意力机制有效改善频谱信息长距离依赖的问题.基于匈牙利算法的预测框匹配模块摒弃了非极大值抑制的数据后处理步骤,将信号检测问题转变为集合预测问题,使模型并行输出检测结果.引入信号重构模块,将频谱重构损失函数加入损失函数中,辅助模型挖掘频谱深层表征,提升信号检测性能.实验结果表明,在仅使用信号频谱幅度信息条件下,DETR_S能够在信噪比等于0dB及以上对卫星信号进行精确检测(>95%),优于典型的目标检测方法.