针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,...针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。展开更多
功率传输通道和信号传输通道相互之间存在干扰,导致信号传输通道会降低功率传输效率,而功率传输的干扰则导致信号传输不稳定。针对此,对无线电能与信号并行传输(simultaneous wireless power and data transfer,SWPDT)系统的能量传输效...功率传输通道和信号传输通道相互之间存在干扰,导致信号传输通道会降低功率传输效率,而功率传输的干扰则导致信号传输不稳定。针对此,对无线电能与信号并行传输(simultaneous wireless power and data transfer,SWPDT)系统的能量传输效率和信号传输稳定性问题展开研究,提出一种可实现稳定的功率与信号并行传输的参数设计方法。针对功率信道对信号传输信道的干扰问题,采用双边LCC补偿拓扑和带阻网络;针对信号传输增益受限的问题,考虑各电路之间的耦合关系,提出一种提高信号传输增益的谐振参数优化方法;基于传输增益与功率信道干扰的关系,提出基于粒子群算法并以信号传输信道参数为核心的优化设计方法,以提高系统的信噪比。最后,通过仿真和实验验证所提方法的可行性和正确性。展开更多
The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
文摘针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。
文摘功率传输通道和信号传输通道相互之间存在干扰,导致信号传输通道会降低功率传输效率,而功率传输的干扰则导致信号传输不稳定。针对此,对无线电能与信号并行传输(simultaneous wireless power and data transfer,SWPDT)系统的能量传输效率和信号传输稳定性问题展开研究,提出一种可实现稳定的功率与信号并行传输的参数设计方法。针对功率信道对信号传输信道的干扰问题,采用双边LCC补偿拓扑和带阻网络;针对信号传输增益受限的问题,考虑各电路之间的耦合关系,提出一种提高信号传输增益的谐振参数优化方法;基于传输增益与功率信道干扰的关系,提出基于粒子群算法并以信号传输信道参数为核心的优化设计方法,以提高系统的信噪比。最后,通过仿真和实验验证所提方法的可行性和正确性。
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.