针对现有的线性调频(linear frequency modulation,LFM)信号参数估计算法运算量大、实时性差的问题,提出了基于频谱细化的参数快速估计算法。首先对中频采样信号与其延迟逐点相乘,并对产生的新序列做FFT运算,初步粗略估计出LFM信号的调...针对现有的线性调频(linear frequency modulation,LFM)信号参数估计算法运算量大、实时性差的问题,提出了基于频谱细化的参数快速估计算法。首先对中频采样信号与其延迟逐点相乘,并对产生的新序列做FFT运算,初步粗略估计出LFM信号的调频斜率,然后运用频谱细化方法,即chirp-Z变换,估计出精确的调频斜率。在此基础上,对原信号直接解线调,分析解线调后的信号频谱,估计出信号的起始频率,同样采用频谱细化方法提高估计精度。仿真结果表明算法的有效性。展开更多
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signa...将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。展开更多
文摘针对现有的线性调频(linear frequency modulation,LFM)信号参数估计算法运算量大、实时性差的问题,提出了基于频谱细化的参数快速估计算法。首先对中频采样信号与其延迟逐点相乘,并对产生的新序列做FFT运算,初步粗略估计出LFM信号的调频斜率,然后运用频谱细化方法,即chirp-Z变换,估计出精确的调频斜率。在此基础上,对原信号直接解线调,分析解线调后的信号频谱,估计出信号的起始频率,同样采用频谱细化方法提高估计精度。仿真结果表明算法的有效性。
文摘将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。
文摘提出了一种未知信源数的高分辨 DOA 估计算法。该算法在未知信源数的情况下,利用线性预测(LP)法或 Pisarenko 法与 ASPECT 技术相结合来实现高分辨谱估计。该算法在消除 LP 法或 Pisarenko 法 DOA 估计中存在的伪峰的同时可判断出入射信源数,明显减小 DOA 估计算法的运算量,并可提高谱分辨力。计算机仿真结果证明了新算法理论的正确性和有效性。