期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于不确定性权重的保守Q学习离线强化学习算法 被引量:2
1
作者 王天久 刘全 乌兰 《计算机科学》 CSCD 北大核心 2024年第9期265-272,共8页
离线强化学习(Offline RL)中,智能体不与环境交互而是从一个固定的数据集中获得数据进行学习,这是强化学习领域研究的一个热点。目前多数离线强化学习算法对策略训练过程进行保守正则化处理,训练策略倾向于选择存在于数据集中的动作,从... 离线强化学习(Offline RL)中,智能体不与环境交互而是从一个固定的数据集中获得数据进行学习,这是强化学习领域研究的一个热点。目前多数离线强化学习算法对策略训练过程进行保守正则化处理,训练策略倾向于选择存在于数据集中的动作,从而解决离线强化学习中对数据集分布外(OOD)的状态-动作价值估值错误的问题。保守Q学习算法(CQL)通过值函数正则赋予分布外状态-动作较低的价值来避免该问题。然而,由于该算法正则化过于保守,数据集内的分布内状态-动作也被赋予了较低的价值,难以达到训练策略选择数据集中动作的目的,因此很难学习到最优策略。针对该问题,提出了一种基于不确定性权重的保守Q学习算法(UWCQL)。该方法引入不确定性计算,在保守Q学习算法的基础上添加不确定性权重,对不确定性高的动作给予更高的保守权重,使得策略能更合理地选择数据集分布内的状态-动作。将UWCQL算法应用于D4RL的MuJoCo数据集中进行了实验,实验结果表明,UWCQL算法具有更好的性能表现,从而验证了算法的有效性。 展开更多
关键词 离线强化学习 深度强化学习 强化学习 保守q学习 不确定性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部