Trichoderma strains are used in agriculture because they provide to the plants the following benefits: i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease ca...Trichoderma strains are used in agriculture because they provide to the plants the following benefits: i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii) improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P1 to improve plant growth of locally important horticultural crops: lettuce, tomatoes and peppers and to prevent disease in the greenhouse and field. The effect of the Trichoderma treatment was evaluated by determining the weight of fresh and dry roots and above ground plant biomass, measuring plants height, counting the number of emerged leaves (lettuce, tomatoes and peppers) and quantifying production (tomatoes and peppers). No disease symptoms were found during production, although Fusarium sp. strains pathogenic to tomato were detected in the soil. Compounds containing copper oxychloride are frequently used for fungal disease control in agriculture. In order to investigate the compatibility of T. harzianum T22 and T. atroviride P1 with copper oxychloride applications, the effect on mycelia growth was monitored in both liquid and solid medium. In general, the tests indicated a high level of tolerance of the Trichoderma strains to concentrations of copper oxychloride varying from 0.1 to 5 mmol/L.展开更多
The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and ...The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.展开更多
文摘Trichoderma strains are used in agriculture because they provide to the plants the following benefits: i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii) improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P1 to improve plant growth of locally important horticultural crops: lettuce, tomatoes and peppers and to prevent disease in the greenhouse and field. The effect of the Trichoderma treatment was evaluated by determining the weight of fresh and dry roots and above ground plant biomass, measuring plants height, counting the number of emerged leaves (lettuce, tomatoes and peppers) and quantifying production (tomatoes and peppers). No disease symptoms were found during production, although Fusarium sp. strains pathogenic to tomato were detected in the soil. Compounds containing copper oxychloride are frequently used for fungal disease control in agriculture. In order to investigate the compatibility of T. harzianum T22 and T. atroviride P1 with copper oxychloride applications, the effect on mycelia growth was monitored in both liquid and solid medium. In general, the tests indicated a high level of tolerance of the Trichoderma strains to concentrations of copper oxychloride varying from 0.1 to 5 mmol/L.
基金supported by National Research Foundation of South Africa
文摘The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.