期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
温室中的必需设备——手持式、便携式设备现已成为温室中的重要产品
1
作者 John Erwin 李曦 《农业工程技术(温室园艺)》 2007年第9期17-18,共2页
在过去的20年中,温室中的工具和设备的应用量增长迅速。温室种植者们应用诸如温室电脑控制等大型设备,以及越来越多的便携式设备来进行日常的植物生长检测。该文中,将简要介绍当今温室中的便携设备,以及它们的优缺点。
关键词 便设备 温室 手持 产品 大型设备 电脑控制 植物生长 便设备
在线阅读 下载PDF
基于ConvNeXt卷积神经网络模型对烟叶成熟度识别的研究
2
作者 郭雨萌 肖亦雄 +4 位作者 肖孟宇 马云明 谭军 周喜新 范伟 《北方农业学报》 2025年第1期125-134,共10页
【目的】确定ConvNeXt卷积神经网络模型在烟叶成熟度识别中最适用于便携手持设备应用的主流图像预处理方法。【方法】使用便携手持图像采集设备采集烟叶图像,应用高斯缩放、对比增强、色彩增强和裁剪缩放4种预处理方法,结合ConvNeXt卷... 【目的】确定ConvNeXt卷积神经网络模型在烟叶成熟度识别中最适用于便携手持设备应用的主流图像预处理方法。【方法】使用便携手持图像采集设备采集烟叶图像,应用高斯缩放、对比增强、色彩增强和裁剪缩放4种预处理方法,结合ConvNeXt卷积神经网络构建模型,记录模型对烟叶成熟度识别的准确率、训练耗时和模型大小。通过对比分析不同预处理方法在性能、训练效率和模型大小上的表现,评估ConvNeXt卷积神经网络模型在便携设备上识别烟叶成熟度的应用潜力。【结果】在4种图像预处理方法中,高斯缩放在结合ConvNeXt卷积神经网络模型进行烟叶成熟度识别时综合表现最优,高斯缩放预处理后的模型准确率达到97.68%,优于对比增强、色彩增强和裁剪缩放,且训练耗时仅为8.927 min,模型大小为63.5 MB,兼具高效性与轻量化特征。在对比YOLO和XGBoost等其他模型时,高斯缩放结合ConvNeXt卷积神经网络构建的模型在各项指标中均表现突出,尤其在准确率和训练时间上展现出明显优势,适配便携手持设备的应用需求。【结论】高斯缩放作为图像预处理方法,能有效提升ConvNeXt卷积神经网络模型在烟叶成熟度识别任务中的准确性和运行效率。高斯缩放结合ConvNeXt卷积神经网络构建的模型训练速度快、占用资源少,适合在便携手持图像采集设备上使用。 展开更多
关键词 ConvNeXt卷积神经网络模型 烟叶成熟度识别 便携手持图像采集设备 智能化图像识别 图像预处理方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部