期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
群养猪侵略性行为的深度学习识别方法
被引量:
29
1
作者
高云
陈斌
+4 位作者
廖慧敏
雷明刚
黎煊
李静
罗俊杰
《农业工程学报》
EI
CAS
CSCD
北大核心
2019年第23期192-200,共9页
为了解决因传统机器视觉和图像处理方法的局限性以及复杂的猪体姿态和猪舍环境导致对群养猪侵略性行为识别的有效性、准确率较低的问题,该文基于深度学习的方法,提出使用3D CONV的群养猪侵略性行为识别算法-3DConvNet。分3个批次采集18...
为了解决因传统机器视觉和图像处理方法的局限性以及复杂的猪体姿态和猪舍环境导致对群养猪侵略性行为识别的有效性、准确率较低的问题,该文基于深度学习的方法,提出使用3D CONV的群养猪侵略性行为识别算法-3DConvNet。分3个批次采集18头9.6 kg左右的大白仔猪视频图像,选用第一批次中包含28 d内各个时段的撕咬、撞击、追逐、踩踏4大类,咬耳、咬尾、咬身、头撞头、头撞身、追逐以及踩踏7小类侵略性行为以及吃食、饮水、休息等非侵略性行为共计740段(27114帧)视频作为训练集和验证集,训练集和验证集比例为3:1。结果表明,3D ConvNet网络模型在训练集上的识别准确度达96.78%,在验证集上识别准确度达95.70%。该文算法模型对于不同训练集批次的猪只以及不良照明条件下依然能准确识别侵略性行为,算法模型泛化性能良好。与C3D模型进行对比,该文提出的网络模型准确率高出43.47个百分点,单帧图像处理时间为0.50 s,可满足实时检测的要求。研究结果可为猪场养殖环境中针对猪只侵略性行为检测提供参考。
展开更多
关键词
卷积神经网络
机器视觉
模型
行为
识别
侵略性行为
深度学习
群养猪
在线阅读
下载PDF
职称材料
题名
群养猪侵略性行为的深度学习识别方法
被引量:
29
1
作者
高云
陈斌
廖慧敏
雷明刚
黎煊
李静
罗俊杰
机构
华中农业大学工学院
生猪健康养殖协同创新中心
华中农业大学动物科技学院动物医学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2019年第23期192-200,共9页
基金
“十三五”国家重点研发计划项目(2016YFD0500506)
中央高校自主创新基金(2662018JC003,2662018JC010,2662017JC028)
现代农业技术体系(CARS-35)
文摘
为了解决因传统机器视觉和图像处理方法的局限性以及复杂的猪体姿态和猪舍环境导致对群养猪侵略性行为识别的有效性、准确率较低的问题,该文基于深度学习的方法,提出使用3D CONV的群养猪侵略性行为识别算法-3DConvNet。分3个批次采集18头9.6 kg左右的大白仔猪视频图像,选用第一批次中包含28 d内各个时段的撕咬、撞击、追逐、踩踏4大类,咬耳、咬尾、咬身、头撞头、头撞身、追逐以及踩踏7小类侵略性行为以及吃食、饮水、休息等非侵略性行为共计740段(27114帧)视频作为训练集和验证集,训练集和验证集比例为3:1。结果表明,3D ConvNet网络模型在训练集上的识别准确度达96.78%,在验证集上识别准确度达95.70%。该文算法模型对于不同训练集批次的猪只以及不良照明条件下依然能准确识别侵略性行为,算法模型泛化性能良好。与C3D模型进行对比,该文提出的网络模型准确率高出43.47个百分点,单帧图像处理时间为0.50 s,可满足实时检测的要求。研究结果可为猪场养殖环境中针对猪只侵略性行为检测提供参考。
关键词
卷积神经网络
机器视觉
模型
行为
识别
侵略性行为
深度学习
群养猪
Keywords
convolutional neural network
machine vision
models
behavior recognition
aggressive behavior
deep learning
group pigs
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
群养猪侵略性行为的深度学习识别方法
高云
陈斌
廖慧敏
雷明刚
黎煊
李静
罗俊杰
《农业工程学报》
EI
CAS
CSCD
北大核心
2019
29
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部