供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模...供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模型。将1次侧供回水温度、室外温度、风速、天气情况、流量作为输入变量,供热负荷作为输出变量,前70%的数据作为训练集,后30%的数据作为测试集。通过MALTAB进行仿真模拟,并与传统的BP神经网络、Elman神经网络进行对比分析。仿真结果显示GRU神经网络预测模型MAPE为3.94%,RMSE为76.77,预测效果最佳。展开更多
合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影...合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。展开更多
文摘供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模型。将1次侧供回水温度、室外温度、风速、天气情况、流量作为输入变量,供热负荷作为输出变量,前70%的数据作为训练集,后30%的数据作为测试集。通过MALTAB进行仿真模拟,并与传统的BP神经网络、Elman神经网络进行对比分析。仿真结果显示GRU神经网络预测模型MAPE为3.94%,RMSE为76.77,预测效果最佳。