SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(...SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(2)@CNTs)is synthesized through an efficient method of one-pot alternating current electrochemical dispersion.By using heat treatment at 400℃,the SnO_(2)@CNTs-400 composite material with abundant mesoporous structure is obtained,while the crystal particles are grown,and a strong bonding effect is formed with CNTs via powerful Sn-O-C bond.Benefiting from the introduction of high electrical conductivity CNTs and outstanding structural characteristics,as prepared composite material(SnO_(2)@CNTs-400)exhibit enhanced diffusion dynamics,lithium-ion transmission rate and structural steadiness.The specific capacity of SnO_(2)@CNTs and SnO_(2)@CNTs-400 as anodes for lithium-ion batteries can reach 690.2 mA·h/g and 836.5 mA·h/g,respectively,after 100 cycles at 0.5 A/g.The abundant chemical bonds and porous structure can be formed in composite via alternating current synthesis method,which takes significant in improving electrochemical properties.展开更多
The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic p...The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.展开更多
基金Project(2023JЛ10041)supported by the Distinguished Young Scholar Fund Project of Hunan Province Natural Science Foundation,ChinaProject(22A0114)supported by the Hunan Provincial Education Office Foundation of China+2 种基金Projects(GX-ZD20211004,GX-ZD20221007)supported by the Science and Technology Program of Xiangtan,ChinaProject(R24-5979269037)supported by the RSC Research Fund Grout,EnglandProject(S202310530037X)supported by the National College Students Innovative Experimental Program Funding Project,China。
文摘SnO_(2)is used as electrode material with excellent properties,but it has some disadvantages such as slow reaction kinetics,low inherent conductivity and complex preparation process.Here,SnO_(2)@carbon nanotubes(SnO_(2)@CNTs)is synthesized through an efficient method of one-pot alternating current electrochemical dispersion.By using heat treatment at 400℃,the SnO_(2)@CNTs-400 composite material with abundant mesoporous structure is obtained,while the crystal particles are grown,and a strong bonding effect is formed with CNTs via powerful Sn-O-C bond.Benefiting from the introduction of high electrical conductivity CNTs and outstanding structural characteristics,as prepared composite material(SnO_(2)@CNTs-400)exhibit enhanced diffusion dynamics,lithium-ion transmission rate and structural steadiness.The specific capacity of SnO_(2)@CNTs and SnO_(2)@CNTs-400 as anodes for lithium-ion batteries can reach 690.2 mA·h/g and 836.5 mA·h/g,respectively,after 100 cycles at 0.5 A/g.The abundant chemical bonds and porous structure can be formed in composite via alternating current synthesis method,which takes significant in improving electrochemical properties.
文摘The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.