期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
1
作者
罗洋
何自芬
+1 位作者
张印辉
陈光晨
《农业机械学报》
北大核心
2025年第1期377-387,共11页
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf gra...
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf grade and disease recognition network,CLGDRNet)。首先,CLGDRNet采用CSPNet、GhostNet、ShuffleNet构建特征提取主干网络,同时将CSPNet、GhostNet、ShuffleNet所提取的特征信息进行共享以达到信息互补的目的;其次,设计多感受野特征自适应融合模块(Multi-receptive field feature adaptive fusion module,MRFA),将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,提出一种深层梯度跨空间学习高效多尺度注意力模块(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),将EMAD嵌入模型的颈部以获取深层梯度信息和目标坐标信息并跨空间融合不同尺度的上下文信息,使模型能够对深层特征图产生更精确的像素级关注。实验结果表明,CLGDRNet在初烤烟叶分级数据集(Tobacco leaf grading dataset,TLGD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到85.0%、76.1%,在苹果叶病害数据集(Apple leaf disease dataset,ALDD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到97.6%、74.2%。相较于多种先进目标检测算法,CLGDRNet具有更高的识别精度,可为高精度作物叶片等级和病害识别提供关键技术支撑。
展开更多
关键词
作物叶片等级
作物
叶片
病害
目标检测
信息共享
多感受野特征融合
在线阅读
下载PDF
职称材料
题名
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
1
作者
罗洋
何自芬
张印辉
陈光晨
机构
红塔烟草(集团)有限责任公司昭通卷烟厂
昆明理工大学机电工程学院
出处
《农业机械学报》
北大核心
2025年第1期377-387,共11页
基金
国家自然科学基金项目(62171206、62061022)
中国烟草总公司云南省公司烟叶智能分级项目(HZ2021K0462A)。
文摘
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf grade and disease recognition network,CLGDRNet)。首先,CLGDRNet采用CSPNet、GhostNet、ShuffleNet构建特征提取主干网络,同时将CSPNet、GhostNet、ShuffleNet所提取的特征信息进行共享以达到信息互补的目的;其次,设计多感受野特征自适应融合模块(Multi-receptive field feature adaptive fusion module,MRFA),将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,提出一种深层梯度跨空间学习高效多尺度注意力模块(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),将EMAD嵌入模型的颈部以获取深层梯度信息和目标坐标信息并跨空间融合不同尺度的上下文信息,使模型能够对深层特征图产生更精确的像素级关注。实验结果表明,CLGDRNet在初烤烟叶分级数据集(Tobacco leaf grading dataset,TLGD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到85.0%、76.1%,在苹果叶病害数据集(Apple leaf disease dataset,ALDD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到97.6%、74.2%。相较于多种先进目标检测算法,CLGDRNet具有更高的识别精度,可为高精度作物叶片等级和病害识别提供关键技术支撑。
关键词
作物叶片等级
作物
叶片
病害
目标检测
信息共享
多感受野特征融合
Keywords
crop leaf grade
crop leaf disease
object detection
information sharing
multi-receptive field feature fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
罗洋
何自芬
张印辉
陈光晨
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部