期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
运动减肥中运动强度确定依据的实验研究 被引量:35
1
作者 李蕾 戚一峰 +1 位作者 郭黎 陈文鹤 《上海体育学院学报》 CSSCI 北大核心 2006年第4期50-53,69,共5页
采用实验法,分别测定体脂百分比低、中、高3组受试者在递增运动负荷中的有氧能力指标、呼吸商等气体代谢指标以及无氧运动能力指标,研究体脂百分比与其之间的关系。结果发现:体脂百分比与有氧、无氧能力各指标间呈显著的负相关;在样本... 采用实验法,分别测定体脂百分比低、中、高3组受试者在递增运动负荷中的有氧能力指标、呼吸商等气体代谢指标以及无氧运动能力指标,研究体脂百分比与其之间的关系。结果发现:体脂百分比与有氧、无氧能力各指标间呈显著的负相关;在样本整体运动能力均处于低水平的状况下,高体脂百分比组有氧和无氧运动能力均较差;在递增运动负荷中,高体脂百分比组的呼吸商上升幅度较大,在接近乳酸阈值附近呼吸商值偏高。说明高体脂成分是机体运动能力的限制因素;对于运动水平较低的个体,在较低负荷下结合呼吸商情况,确定运动减肥强度具有重要意义。提示:肥胖程度高的个体,其乳酸阈值小,相应的乳酸阈强度低,在运动减肥中应采取相对较小的运动强度。 展开更多
关键词 运动减肥 体脂成分 运动强度 呼吸商
在线阅读 下载PDF
Automated body composition analysis system based on chest CT for evaluating content of muscle and adipose 被引量:2
2
作者 YANG Jie LIU Yanli +2 位作者 CHEN Xiaoyan CHEN Tianle LIU Qi 《中国医学影像技术》 CSCD 北大核心 2024年第8期1242-1248,共7页
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col... Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM. 展开更多
关键词 body composition THORAX muscle skeletal adipose tissue deep learning tomography X-ray computed
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部